Skip to main content

Advertisement

Log in

Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biosurfactant produced by Bacillus licheniformis R2 was characterized and studied for enhancing the heavy crude oil recovery at 80 °C in coreflood experiments. The strain was found to be nonpathogenic and produced biosurfactant, reducing the surface tension of medium from 70 to 28 mN/m with 1.1 g/l yield. The biosurfactant was quite stable during exposure to elevated temperatures (85 °C for 90 days), high salinity (10 % NaCl), and a wide range of pH (5–12) for 10 days. It was characterized as lipopeptide similar to lichenysin-A, with a critical micelle concentration of about 19.4 mg/l. The efficiency of crude biosurfactant for enhanced oil recovery by core flood studies revealed it to recovering additional 37.1 % oil from Berea sandstone cores at 80 °C. The results are indicative of the potential for the development of lipopeptide biosurfactant-based ex situ microbial enhanced heavy oil recovery from depleting oil fields with extreme temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 30, 558–565.

    Article  CAS  Google Scholar 

  2. Randhawa, K. K. S., & Rahman, P. K. (2014). Rhamnolipid biosurfactants—past, present, and future scenario of global market. Frontiers in Microbiology, 5, 454.

    Google Scholar 

  3. Sen, R. (2008). Biotechnology in petroleum recovery: the microbial EOR. Progress in Energy and Combustion Science, 34, 714–724.

    Article  CAS  Google Scholar 

  4. Gao, C. H., & Zekri, A. (2011). Applications of microbial-enhanced oil recovery technology in the past decade. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 972–989.

    Article  CAS  Google Scholar 

  5. Perfumo, A., Rancich, I., & Banat, I. M. (2010). Possibilities and challenges for biosurfactants uses in petroleum industry. In R. Sen (Ed.), Biosurfactants (pp. 135–145). Austin, TX: Landes Biosciences.

    Chapter  Google Scholar 

  6. Al-Sulaimani, H., Joshi, S., Al-Wahaibi, Y., Al-Bahry, S., Elshafie, A., & Al-Bemani, A. (2011). Microbial biotechnology for enhancing oil recovery: current developments and future prospects. Biotechnology Bioinformatics and Bioengineering, 1, 147–158.

    Google Scholar 

  7. Bailey, S. A., Kenney, T. M., & Schneider, D. R. (2001). Microbial enhanced oil recovery: diverse successful applications of biotechnology in the oil field. In SPE Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur, Malaysia. Society of Petroleum Engineers 72129. doi:10.2118/72129-MS.

  8. Souayeh, M., Al-Wahaibi, Y., Al-Bahry, S., Elshafie, A., Al-Bemani, A., Joshi, S., Al-Hashmi, A., & Al-Mandhari, M. (2014). Optimization of a low-concentration Bacillus subtilis strain biosurfactant toward microbial enhanced oil recovery. Energy and Fuels, 28, 5606–5611.

    Article  CAS  Google Scholar 

  9. Joshi, S., Yadav, S., & Desai, A. J. (2008). Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2. Biochemical Engineering Journal, 41, 122–127.

    Article  CAS  Google Scholar 

  10. Joshi, S. J., & Desai, A. J. (2013). Bench-scale production of biosurfactants and their potential in Ex-Situ MEOR application. Soil and Sediment Contamination: An International Journal, 22, 701–715.

    Article  CAS  Google Scholar 

  11. Joshi, S. J., Geetha, S. J., Yadav, S., & Desai, A. J. (2013). Optimization of bench-scale production of biosurfactant by Bacillus licheniformis R2. APCBEE Procedia, 5, 232–236.

    Article  CAS  Google Scholar 

  12. Youssef, N. H., Duncan, K. E., & McInerney, M. J. (2005). Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Applied and Environmental Microbiology, 71, 7690–7695.

    Article  CAS  Google Scholar 

  13. Smith, W. B. (1963). The analysis of synthetic detergents. Journal of the Society of Cosmetic Chemists, 14, 513–527.

    CAS  Google Scholar 

  14. Hirsch, R. L. (2005). The inevitable peaking of world oil production. The Atlantic Council of the United States, Vol. XVI, 1–10.

  15. Murray, J., & David, K. (2012). Oil’s tipping point has passed. Nature, 481, 433–435.

    Article  CAS  Google Scholar 

  16. Clerck, E., & Vos, P. (2004). Genotypic diversity among Bacillus licheniformis strains from various sources. FEMS Microbiology Letters, 231, 91–98.

    Article  Google Scholar 

  17. Haydushka, I. A., Markova, N., Kirina, V., & Atanassova, M. (2012). Recurrent sepsis due to Bacillus licheniformis. Journal of Global Infectious Diseases, 4, 82–83.

    Article  Google Scholar 

  18. Gad, S. D., & Weil, C. S. (1994). Statistics for toxicologists. In A. W. Hayes (Ed.), Principles and methods of toxicology (3rd ed., pp. 221–274). New York: Raven Press Ltd.

    Google Scholar 

  19. Horowitz, S., & Griffin, W. M. (1991). Structural analysis of Bacillus licheniformis 86 surfactant. Journal of Industrial Microbiology, 7, 45–52.

    Article  CAS  Google Scholar 

  20. Mikkola, R., Kolari, M., Andersson, M. A., Helin, J., & Salkinoja‐Salonen, M. S. (2000). Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. European Journal of Biochemistry, 267, 4068–4074.

    Article  CAS  Google Scholar 

  21. Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technology, 99, 195–199.

    Article  CAS  Google Scholar 

  22. Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. 4. Desalination, 285, 198–204.

    Article  CAS  Google Scholar 

  23. Gudiña, E. J., Pereira, J. F., Rodrigues, L. R., Coutinho, J. A., & Teixeira, J. A. (2012). Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. International Biodeterioration and Biodegradation, 68, 56–64.

    Article  Google Scholar 

  24. Saimmai, A., Udomsilp, S., & Maneerat, S. (2013). Production and characterization of biosurfactant from marine bacterium Inquilinuslimosus KB3 grown on low-cost raw materials. Annals of Microbiology, 63, 1327–1339.

    Article  CAS  Google Scholar 

  25. Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324–333.

    Article  CAS  Google Scholar 

  26. Darvishi, P., Ayatollahi, S., Mowla, D., & Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids and Surfaces B: Biointerfaces, 84, 292–300.

    Article  CAS  Google Scholar 

  27. Al-Sulaimani, H., Al-Wahaibi, Y., Al-Bahry, S. N., Elshafie, A., Al-Bemani, A., Joshi, S., & Zaragari, S. (2011). Optimization and partial characterization of biosurfactant produced by Bacillus species and their potential for enhanced oil recovery. Society of Petroleum Engineers Journal, 16, 672–682.

    CAS  Google Scholar 

  28. Bachmann, R. T., Johnson, A. C., & Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: an overview. International Biodeterioration and Biodegradation, 86, 225–237.

    Article  CAS  Google Scholar 

  29. Youssef, N., Simpson, D. R., Duncan, K. E., McInerney, M. J., Folmsbee, M., Fincher, T., & Knapp, R. M. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Applied and Environmental Microbiology, 73, 1239–1247.

    Article  CAS  Google Scholar 

  30. Youssef, N., Simpson, D. R., McInerney, M. J., & Duncan, K. E. (2013). In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. International Biodeterioration and Biodegradation, 81, 127–132.

    Article  CAS  Google Scholar 

  31. Yakimov, M. M., Amro, M. M., Bock, M., Boseker, K., Fredrickson, H. L., Kessel, D. G., & Timmis, K. N. (1997). The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. Journal of Petroleum Science and Engineering, 18, 147–160.

    Article  CAS  Google Scholar 

  32. Pereira, J. F., Gudiña, E. J., Costa, R., Vitorino, R., Teixeira, J. A., Coutinho, J. A., & Rodrigues, L. R. (2013). Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 111, 259–268.

    Article  CAS  Google Scholar 

  33. Gudiňa, E. J., Pereira, J. F., Costa, R., Coutinho, J. A., Teixeira, J. A., & Rodrigues, L. R. (2013). Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials, 261, 106–113.

    Article  Google Scholar 

  34. Arora, P., Ranade, D. R., & Dhakephalkar, P. K. (2014). Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91–96 °C. Bioresource Technology, 165, 274–278.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SJ acknowledge the M.S. University of Baroda and Institute of reservoir studies, Oil and Natural Gas Corporation Ltd., India, for research funding, extended stability studies, and coreflood facility; Sun Pharmaceutical Advanced Research Centre, Baroda, Gujarat, India, for NMR studies; Jay Research Foundation, Gujarat, India, for pathogenicity studies and Indian Institute of Science, Bangalore, Biophysics Department for MALDI-TOF–MS/MS analysis.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This research involved “Acute Dermal Toxicity Testing” of the bacterium, using Wistar rats. It was conducted at “Jay Research Foundation, Gujarat, India,” as per the prescribed guidelines and the laws. JRF India (Valsad, Gujarat, India; http://www.jrfonline.com/)is accredited by AAALAC as well as Committee for the Purpose of Control and Supervision of Experiments on Animals (35/1999/CPCSEA) with respect to humane and ethical treatment of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket J. Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S.J., Geetha, S.J. & Desai, A.J. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2. Appl Biochem Biotechnol 177, 346–361 (2015). https://doi.org/10.1007/s12010-015-1746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1746-4

Keywords

Navigation