Advertisement

Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 190–206 | Cite as

The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering

  • Wei-Qian Huang
  • Li-Fen Zhong
  • Zhi-Zhong Meng
  • Zi-Juan You
  • Jia-Zhou Li
  • Xiao-Chun LuoEmail author
Article

Abstract

A leucine aminopeptidase Lap1 was cloned from Aspergillus sojae GIM3.30. The truncated Lap1 without a signal peptide was over-expressed in P. pastoris, and the enzymatic characteristics of recombinant Lap1 (rLap1) were tested. The rLap1 was about 36.7 kDa with an optimal pH 8.0 and optimal temperature 50 °C for substrate Leu-p-nitroanilide and it sustained 50 % activity after 1 h incubation at 50 °C. The activity of rLap1 was significantly inhibited by EDTA, whereas Co2+, Mn2+, and Ca2+ ions, but not Zn2+ ions, restored its activity. rLap1 showed the highest activity against Arg-pNA and then Leu-, Lys-, Met-, and Phe-pNA. The 3D structure of rLap1 showed it had a conserved functional charge/dipole complex and a hydrogen bond network of Zn2-D179-S228-Q177-D229-S158 around its active center. An acidic Asp residue was found at the bottom of the substrate binding pocket, which explains its preference for basic N-terminal amino acid substrates such as Arg and Lys. rLap1 improved the degree of hydrolysis of casein and soy protein hydrolysates and also decreased their bitterness, indicating its potential utility in food production.

Keywords

Aspergillus sojae Recombinant leucine aminopeptidase Pichia pastoris Debittering 3D structure 

Notes

Acknowledgments

This work was financially supported by Guangdong Province of China Science and Technology Projects (Project No. 2012B020311003, No. 2013B010404003, No. 2014A010107005).

References

  1. 1.
    Hersh, L. B., Aboukhair, N., & Watson, S. (1987). Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides, 8, 523–532.CrossRefGoogle Scholar
  2. 2.
    Park, H., Shim, J. S., Kim, B. S., Jung, H. J., Huh, T.-L., & Kwon, H. J. (2014). Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochemical and Biophysical Research Communications, 450, 561–567.CrossRefGoogle Scholar
  3. 3.
    Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: properties and functions. FEMS Microbiology Reviews, 18, 319–344.CrossRefGoogle Scholar
  4. 4.
    Xi, H., Tian, Y., Zhou, N., Zhou, Z., & Wei, S. (2014). Characterization of an N -glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris. Journal of Basic Microbiology, 55, 236–246.CrossRefGoogle Scholar
  5. 5.
    Kusumoto, K. I., Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., Ishida, H., Takeuchi, M., & Kashiwagi, Y. (2008). Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 105, 1711–1719.CrossRefGoogle Scholar
  6. 6.
    Ramírez-Zavala, B., Mercado-Flores, Y., Hernández-Rodríguez, C., & Villa-Tanaca, L. (2004). Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiology Letters, 235, 369–375.CrossRefGoogle Scholar
  7. 7.
    Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 40, D343–D350.CrossRefGoogle Scholar
  8. 8.
    Duprez, K., Scranton, M. A., Walling, L. L., & Fan, L. (2014). Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Crystallographica, 70, 1649–1658.Google Scholar
  9. 9.
    Matsui, M., Fowler, J. H., & Walling, L. L. (2006). Leucine aminopeptidases: diversity in structure and function. Biological Chemistry, 387, 1535–1544.CrossRefGoogle Scholar
  10. 10.
    Stressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S. and Fischer, L. (2013). Characterization of the recombinant exopeptidases pepx and pepn from Lactobacillus helveticus ATCC 12046 important for food protein hydrolysis. Plos One, 8, −.Google Scholar
  11. 11.
    Nampoothiri, K. M., Nagy, V., Kovacs, K., Szakacs, G., & Pandey, A. (2005). L-leucine aminopeptidase production by filamentous Aspergillus fungi. Letters in Applied Microbiology, 41, 498–504.CrossRefGoogle Scholar
  12. 12.
    Lin, L.-L., Hsu, W.-H., Wu, C.-P., Chi, M.-C., Chou, W.-M., & Hu, H.-Y. (2004). A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles, 8, 79–87.CrossRefGoogle Scholar
  13. 13.
    Shen, Y., Wang, F., Lan, D., Liu, Y., Yang, B., & Wang, Y. (2011). Biochemical properties and potential applications of recombinant leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. International Journal of Molecular Sciences, 12, 7609–7625.CrossRefGoogle Scholar
  14. 14.
    Rahulan, R., Dhar, K., Nampoothiri, K., & Pandey, A. (2012). Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. Journal of Food Science, 77, C791.CrossRefGoogle Scholar
  15. 15.
    Nakadai, T., Nasuno, S., & IGUCHI, N. (1973). Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agricultural and Biological Chemistry, 37, 757–765.CrossRefGoogle Scholar
  16. 16.
    NAKADAI, T., & NASUNO, S. (1977). Purification and properties of leucine aminopeptidase IV from Aspergillus oryzae. Agricultural and Biological Chemistry, 41, 1657–1666.CrossRefGoogle Scholar
  17. 17.
    Chien, H. C. R., Lin, L. L., Chao, S. H., Chen, C. C., Wang, W. C., Shaw, C. Y., Tsai, Y. C., Hu, H. Y., & Hsu, W. H. (2002). Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Biochimica et Biophysica Acta, 1576, 119–126.CrossRefGoogle Scholar
  18. 18.
    Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., & Akita, O. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438, 1157–1161.CrossRefGoogle Scholar
  19. 19.
    Sato, A., Oshima, K., Noguchi, H., Ogawa, M., Takahashi, T., Oguma, T., Koyama, Y., Itoh, T., Hattori, M., & Hanya, Y. (2011). Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Research, 18, 165–176.CrossRefGoogle Scholar
  20. 20.
    Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., Yamagata, Y., Amano, H., Ishida, H., Takeuchi, M., Kashiwagi, Y., & Kusumoto, K.-I. (2011). Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae. Current Microbiology, 62, 557–564.CrossRefGoogle Scholar
  21. 21.
    Gotou, T., Shinoda, T., Mizuno, S., & Yamamoto, N. (2009). Purification and identification of proteolytic enzymes from Aspergillus oryzae capable of producing the antihypertensive peptide Ile-Pro-Pro. Journal of Bioscience and Bioengineering, 107, 615.CrossRefGoogle Scholar
  22. 22.
    Chevrier, B., D’orchymont, H., Schalk, C., Tarnus, C., & Moras, D. (1996). The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. European Journal of Biochemistry, 237, 393–398.CrossRefGoogle Scholar
  23. 23.
    Hanaya, K., Suetsugu, M., Saijo, S., Yamato, I., & Aoki, S. (2012). Potent inhibition of dinuclear zinc (II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. JBIC, Journal of Biological Inorganic Chemistry, 17, 517–529.CrossRefGoogle Scholar
  24. 24.
    Fundoiano-Hershcovitz, Y., Rabinovitch, L., Langut, Y., Reiland, V., Shoham, G., & Shoham, Y. (2004). Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus. FEBS Letters, 571, 192–196.CrossRefGoogle Scholar
  25. 25.
    Juárez-Montiel, M., Ibarra, J. A., Chávez-Camarillo, G., Hernández-Rodríguez, C., & Villa-Tanaca, L. (2014). Molecular cloning and heterologous expression in Pichia pastoris of x-prolyl-dipeptidyl aminopeptidase from basidiomycete Ustilago maydis. Applied Biochemistry and Biotechnology, 172, 2530–2539.CrossRefGoogle Scholar
  26. 26.
    Tan, P., & Konings, W. (1990). Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology, 56, 526–532.Google Scholar
  27. 27.
    Karadzic, I., Izrael, L., Gojgic-Cvijovic, G., & Vujcic, Z. (2002). Leucine aminopeptidase from Streptomyces hygroscopicus is controlled by a low molecular weight inhibitor. Journal of Bioscience and Bioengineering, 94, 309.CrossRefGoogle Scholar
  28. 28.
    Ke, Y., Huang, W.-Q., Li, J.-Z., Xie, M.-Q. and Luo, X.-C. (2012). Enzymatic characteristics of a recombinant neutral protease I (rNpI) from Aspergillus oryzae expressed in Pichia pastoris. Journal of Agricultural and Food Chemistry, 60, 12164–12169.CrossRefGoogle Scholar
  29. 29.
    Damle, M., Harikumar, P., & Jamdar, S. (2010). Debittering of protein hydrolysates using immobilized chicken intestinal mucosa. Process Biochemistry, 45, 1030–1035.CrossRefGoogle Scholar
  30. 30.
    Desmarais, W., Bienvenue, D. L., Bzymek, K. P., Petsko, G. A., Ringe, D., & Holz, R. C. (2006). The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. JBIC, Journal of Biological Inorganic Chemistry, 11, 398–408.CrossRefGoogle Scholar
  31. 31.
    Overington JP, Zhu, ZY., Sali A, Johnson MS, Sowdhamini R, Louie GV, Blundell TL, (1993). Molecular recognition in protein families: a database of aligned three-dimensional structures of related proteins. Biochemical Society Transactions, 3, 597-604.CrossRefGoogle Scholar
  32. 32.
    MacKerell, A. D., Brooks, B., Brooks, C. L., Nilsson, L., Roux, B., Won, Y. and Karplus, M. (2002), in Encyclopedia of Computational Chemistry, John Wiley & Sons, Ltd.Google Scholar
  33. 33.
    Bzymek, K. P., Moulin, A., Swierczek, S. I., Ringe, D., Petsko, G. A., Bennett, B., & Holz, R. C. (2005). Kinetic, spectroscopic, and X-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica. Biochemistry, 44, 12030–12040.CrossRefGoogle Scholar
  34. 34.
    Ataie, N., Hoang, Q., Zahniser, M., Tu, Y., Milne, A., Petsko, G., & Ringe, D. (2008). Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Biochemistry, 47, 7673–7683.CrossRefGoogle Scholar
  35. 35.
    Wagner, F. W., Wilkes, S. H., & Prescott, J. M. (1972). Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides. Journal of Biological Chemistry, 247, 1208–1210.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wei-Qian Huang
    • 1
  • Li-Fen Zhong
    • 1
  • Zhi-Zhong Meng
    • 1
  • Zi-Juan You
    • 1
  • Jia-Zhou Li
    • 2
  • Xiao-Chun Luo
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Fermentation and enzyme engineering, School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Food and BioengineeringGuangdong Industry Technical CollegeGuangzhouPeople’s Republic of China

Personalised recommendations