Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 175–189 | Cite as

Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene

  • B. Jasim
  • Mathew Chacko Anish
  • Vellakudiyan Shimil
  • Mathew Jyothis
  • E. K. RadhakrishnanEmail author


Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.


Endophyte Plant growth promotion ACC deaminase Elettaria cardamomum In silico modelling and docking 



This study was supported by the Department of Biotechnology (DBT), Government of India under DBT-RGYI and DBT-MSUB schemes and Kerala State Council for Science, Technology & Environment (KSCSTE), Government of Kerala under KSCSTE-SARD support programme.

Ethical Standards

We have not used any animal models for the experiments and thus do not require ethical committee clearance.

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12010_2015_1736_MOESM1_ESM.doc (1.2 mb)
Fig. S1 Validation of the 3D protein structure obtained by homology modelling of the protein sequence of the ACC deaminase gene using Ramachandran plot. a – Isolate EcB 2; b – Isolate ECB 7; c – Isolate ECB 9; d – Isolate ECB 10; e – Isolate ECB 11; f – Template (ACC deaminase gene of Pseudomonas sp. (strain ACP) AAA25689) (doc 1270 kb)
12010_2015_1736_MOESM2_ESM.docx (12 kb)
Table S1 (docx 11.7 kb)


  1. 1.
    Jasim, B., Jimtha, J. C., Jyothis, M., & Radhakrishnan, E. K. (2013). Plant growth promoting potential of endophytic bacteria isolated from piper nigrum. Plant Growth Regulation, 71, 1–11.CrossRefGoogle Scholar
  2. 2.
    Taurian, T., Anzuay, S. M., Angelini, J. G., Tonelli, M. L., Ludueña, L., Pena, D., Ibáñez, F., & Fabra, A. (2010). Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and Soil, 329, 421–431.CrossRefGoogle Scholar
  3. 3.
    Goldstein, A. H. (1986). Bacterial mineral phosphate solubilization: historical perspective and future prospects. American Journal of Alternative Agriculture, 1, 57–65.CrossRefGoogle Scholar
  4. 4.
    Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7, 1673–1685.CrossRefGoogle Scholar
  5. 5.
    Li, E. W., Jiang, L. H., Guo, L. D., Zhang, H., & Che, Y. S. (2008). Pestalachlorides a-C, antifungal metabolites from the plant endophytic fungus pestalotiopsis adusta. Bioorganic & Medicinal Chemistry, 16, 7894–7899.CrossRefGoogle Scholar
  6. 6.
    Ali, A., Charles, T. C., & Glick, B. R. (2014). Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80, 160–167.CrossRefGoogle Scholar
  7. 7.
    Thibodeaux, C. J., & Liu, H. W. (2011). Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5'-phosphate dependent reaction. Biochemistry, 50(11), 1950–1962.CrossRefGoogle Scholar
  8. 8.
    Abeles, F. B. (1973). Ethylene in plant biology. New York: Academic Press.Google Scholar
  9. 9.
    Morgan, P. W., & Drew, C. D. (1997). Ethylene and plant responses to stress. Physiologia Plantarum, 100, 620–630.CrossRefGoogle Scholar
  10. 10.
    Fujino, A., Ose, T., Yao, M., Tokiwano, T., Honma, M., Watanabe, N., & Tanaka, I. (2004). Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. Journal of Molecular Biology, 341, 999–1013. doi: 10.1016/j.jmb.2004.06.062.CrossRefGoogle Scholar
  11. 11.
    Shah, S., Li, J., Moffatt, B. A., & Glick, B. R. (1998). Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 44, 833–843.CrossRefGoogle Scholar
  12. 12.
    Jia, Y. J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N., Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., & Honma, M. (1999). Synthesis and degradation of 1-aminocyclopropane- 1-carboxylic acid by Penicillium citrinum. Bioscience Biotechnology and Biochemistry, 63, 542–549.CrossRefGoogle Scholar
  13. 13.
    Li, J., & Glick, B. R. (2001). Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Canadian Journal of Microbiology, 47, 359–367.CrossRefGoogle Scholar
  14. 14.
    Sheehy, R. E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., & Hiatt, W. R. (1991). Isolation, sequence, and expression in Escherichia-coli of the Pseudomonas sp strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. Journal of Bacteriology, 173, 5260–5265.Google Scholar
  15. 15.
    Honma, M. (1985). Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agricultural and Biological Chemistry, 49, 567–571.CrossRefGoogle Scholar
  16. 16.
    Jacobson, C. B., Pasternak, J. J., & Glick, B. R. (1994). Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Candian Journal of Microbiology, 40, 1019–1025.CrossRefGoogle Scholar
  17. 17.
    Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., & Honma, M. (1998). Properties, sequence, and synthesis in Escherichia coli of 1- aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. Journal of Biochemistry, 123, 1112–1118.CrossRefGoogle Scholar
  18. 18.
    Chun, J., & Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 45, 240–245.CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.CrossRefGoogle Scholar
  20. 20.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular and Biological Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  21. 21.
    Jimtha, J. C., Smitha, P. V., Anisha, C., Deepthi, T., Meekha, G., Radhakrishnan, E. K., Gayatri, G. P., & Remakanthan, A. (2014). Studies on endophytic bacteria obtained as culturable during development of embryogenic suspension culture of banana. Plant Cell Tissue and Organ Culture, 118, 57–66.CrossRefGoogle Scholar
  22. 22.
    Jasim, B., Jimtha, J. C., Shimil, V., Jyothis, M., & Radhakrishnan, E. K. (2014). Studies on the factors affecting Indole-3-acetic acid production in endophytic bacteria and molecular analysis of ipdC gene. Journal of Applied Microbiology, 117(3), 786–799.CrossRefGoogle Scholar
  23. 23.
    Nikolic, B., Schwab, H., & Sessitsch, A. (2011). Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Archives of Microbiology, 193(9), 665–676.CrossRefGoogle Scholar
  24. 24.
    Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  25. 25.
    Singh, N., & Kashyap, S. (2012). In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. Journal of Molecular Modeling, 18, 4101–4111. doi: 10.1007/s00894-012-1389-0.CrossRefGoogle Scholar
  26. 26.
    Wolf, A., Fritze, A., Hagemann, M., & Berg, G. (2002). Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology, 52, 1937–1944.CrossRefGoogle Scholar
  27. 27.
    Vega, F. E., Pava-Ripoll, M., Posada, F., & Buyer, J. S. (2005). Endophytic bacteria in Coffea arabica L. Journal of Basic Microbiology, 45, 371–380.CrossRefGoogle Scholar
  28. 28.
    Idris, A., Labuschagne, N., & Korsten, L. (2009). Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. Journal of Agricultural Science, 147, 17–30.CrossRefGoogle Scholar
  29. 29.
    Finkmann, W., Altendorf, K., Stackebrandt, E., & Lipski, A. (2000). Characterization of N2O producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 273–282.CrossRefGoogle Scholar
  30. 30.
    Heylen, K., Vanparys, B., Peirsegaele, F., Lebbe, L., & De Vos, P. (2007). Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57, 2056–2061.CrossRefGoogle Scholar
  31. 31.
    Gravel, V., Antoun, H., & Tweddell, R. J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39, 1968–1977.CrossRefGoogle Scholar
  32. 32.
    Ali, B., & Hasnain, S. (2007). Potential of bacterial indoleacetic acid to induce adventitious shoots in plant tissue culture. Letters in Applied Microbiology, 45(2), 128–133.CrossRefGoogle Scholar
  33. 33.
    Govindarajan, M., Kwon, S., & Weon, H. (2007). Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World Journal of Microbiology and Biotechnology, 23, 997–1006.CrossRefGoogle Scholar
  34. 34.
    Richardson, A. E. (2001). Prospects for using soil microorganism to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 897–906.Google Scholar
  35. 35.
    Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRefGoogle Scholar
  36. 36.
    Thakuria, D., Talukdar, N. C., Goswami, C., Hazarika, S., Boro, R. C., & Khan, M. R. (2004). Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science, 86, 978–985.Google Scholar
  37. 37.
    Binder, B. M., Laura, A. M., Anna, N. S., Joseph, R. E., & Anthony, B. B. (2004). Short-term growth responses to ethylene in Arabidopsis seedlings Are EIN3/EIL1 independent. Plant Physiology, 136(2), 2921–2927.CrossRefGoogle Scholar
  38. 38.
    Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 15.CrossRefGoogle Scholar
  39. 39.
    Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463–471.CrossRefGoogle Scholar
  40. 40.
    Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., & Pasternak, J. J. (1994). 1-Aminocyclo propane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40, 911–915.CrossRefGoogle Scholar
  41. 41.
    Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for lowering plant ethylene concentrations by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63–68.CrossRefGoogle Scholar
  42. 42.
    Onofre-Lemus, J., Hernández-Lucas, I., Girard, L., & Caballero-Mellado, J. (2009). ACC (1-Aminocyclopropane-1-Carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Applied and Environmental Microbiology, 70, 6581–6590.CrossRefGoogle Scholar
  43. 43.
    Ali, S., Charles, T. C., & Glick, B. R. (2012). Delay of carnation flower senescence by bacterial endo- phytes expressing ACC deaminase. Journal of Applied Microbiology, 113, 1139–1144.CrossRefGoogle Scholar
  44. 44.
    Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, 3, 1187–1193.CrossRefGoogle Scholar
  45. 45.
    Campbell, B. G., & Thompson, J. A. (1996). 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters, 138, 207–210.CrossRefGoogle Scholar
  46. 46.
    Nascimento, F. X., Rossi, M. J., Soares, C. R. F. S., McConkey, B. J., & Glick, B. R. (2014). New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE, 9(6), e99168.CrossRefGoogle Scholar
  47. 47.
    Yao, M., Ose, T., Sugimoto, H., Horiuchi, A., Nakagawa, A., Wakatsuki, S., Yokoi, D., Murakami, T., Honma, M., & Tanaka, I. (2000). Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. Journal of Biological Chemistry, 44, 34557–34565.CrossRefGoogle Scholar
  48. 48.
    Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251, 1–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Jasim
    • 1
  • Mathew Chacko Anish
    • 2
  • Vellakudiyan Shimil
    • 1
  • Mathew Jyothis
    • 1
  • E. K. Radhakrishnan
    • 1
    Email author
  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Department of ZoologySt. Berchmans CollegeKottayamIndia

Personalised recommendations