Skip to main content
Log in

A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller’s grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-d-xylopyranose and α-l-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alves, J. O., Zhuo, C., Levendis, Y. A., & Tenório, J. A. (2011). Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials. Applied Catalysis B: Environmental, 106, 433–444.

    Article  CAS  Google Scholar 

  2. Gallagher, P. W. (2009). Roles for evolving markets, policies, and technology improvements in U.S. corn ethanol industry development. Genome Informatics, 12–-33.

  3. Liu, S. (2014). Ethanol: a smart choice of product in sustainable biorefinery of plant biomass. Journal of Bioprocess Engineering and Biorefinery, 3, 40–49.

    Article  Google Scholar 

  4. EIA U.S. Energy Information Administration, (2013). U.S. ethanol production and the Renewable Fuel Standard RIN bank. Available from: www.eia.gov. Accessed Jun. 5. 2013.

  5. Renewable Fuels Association, (2007). Ethanol industry outlook 2007: building new horizons. Washington, D. C., US.

  6. Bothast, R. J., & Schlicher, M. A. (2005). Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 67, 19–25.

    Article  CAS  Google Scholar 

  7. Kress, C. A. (2014). Estimated U.S. dried distillers grain with solubles (DDGS) production & use. Iowa:Iowa State University of Science and Technology.

    Google Scholar 

  8. Renewable Fuels Association, (2014). Industry resources: co-products. Washington, D. C., US.

  9. Irwin, S.H. (2014). Recent trends in the profitability of ethanol production. Department of Agricultural and Consumer Economics, University of Illinois. Avaliable from: farmdocdaily.illinois.edu. Accessed March 14 20148

  10. Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X. L., Balan, V., Dale, B., & Cotta, M. A. (2008). Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresource Technology, 99, 5216–5225.

    Article  CAS  Google Scholar 

  11. Ladisch, M., Dale, B., Tyner, W., Mosier, N., Kim, Y., Cotta, M., Dien, B., Blascheck, H., Laurenas, E., Shanks, B., Verkade, J., Schell, C., & Petersen, G. (2008). Cellulose conversion in dry grind ethanol plants. Bioresource Technology, 99, 5157–5159.

    Article  CAS  Google Scholar 

  12. Shi, J. B., Yang, Q. L., Lin, L., Gong, Y., Pang, C. S., & Xie, T. J. (2012). The structural characterization of corn stalks hemicelluloses during active oxygen cooking as a pretreatment for biomass conversion. BioResources, 7, 5236–5246.

    Google Scholar 

  13. Weil, J. R., Sarikaya, A., Rau, S. L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., & Ladisch, M. R. (1998). Pretreatment of corn fiber by pressure cooking in water. Applied Biochemistry and Biotechnology, 73, 1–17.

    Article  CAS  Google Scholar 

  14. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. R. (2005). Feature of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 674–686.

    Google Scholar 

  15. Tucker, M. P., Nagle, N. J., Jennings, E. W., Ibsen, K. N., Aden, A., Nguyen, Q. A., Kim, K. H., & Noll, S. L. (2004). Conversion of distiller’s grain into fuel alcohol and a higher-value animal feed by dilute-acid pretreatment. Applied Biochemistry and Biotechnology, 115, 1139–1159.

    Article  Google Scholar 

  16. Fonseca, D. A., Lupitskyy, R., Timmons, D., Gupta, M., & Satyavolu, J. (2014). Towards integrated biorefinery from dried distillers grains: selective extraction of pentoses using dilute acid hydrolysis. Biomass and Bioenergy, 71, 178–186.

    Article  CAS  Google Scholar 

  17. Noureddini, H., & Byun, J. (2010). Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresource Technology, 101, 1060–1067.

    Article  CAS  Google Scholar 

  18. Yan, J. P., Kiemle, D., & Liu, S. J. (2015). Quantification of xylooligomers in hot water wood extract by 1H–13C heteronuclear single quantum coherence NMR. Carbohydrate Polymers, 117, 903–909.

    Article  CAS  Google Scholar 

  19. Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P., & Sun, R. C. (2009). Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. Journal of Agricultural and Food Chemistry, 57, 6305–6317.

    Article  CAS  Google Scholar 

  20. Sun, S. N., Yuan, T. Q., Li, M. F., Cao, X. F., Xu, F., & Liu, Q. Y. (2012). Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus affinis). Cellulose Chemistry and Technology, 46, 165–176.

    CAS  Google Scholar 

  21. Lüers, H. Z. (1930). Das Celluloseverzuckerungsverfahren von H. Scholler. Angewandte Chemie, 43, 455–458.

    Article  Google Scholar 

  22. Saeman, J. F. (1945). Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry, 37, 43–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, S. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate. Appl Biochem Biotechnol 177, 162–174 (2015). https://doi.org/10.1007/s12010-015-1735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1735-7

Keywords

Navigation