Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 162–174 | Cite as

A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate

  • Hanchi Chen
  • Shijie LiuEmail author


Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller’s grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-d-xylopyranose and α-l-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.


DDGS NMR HSQC characterization Acid hydrolysis Hydrolysis kinetics 


  1. 1.
    Alves, J. O., Zhuo, C., Levendis, Y. A., & Tenório, J. A. (2011). Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials. Applied Catalysis B: Environmental, 106, 433–444.CrossRefGoogle Scholar
  2. 2.
    Gallagher, P. W. (2009). Roles for evolving markets, policies, and technology improvements in U.S. corn ethanol industry development. Genome Informatics, 12–-33.Google Scholar
  3. 3.
    Liu, S. (2014). Ethanol: a smart choice of product in sustainable biorefinery of plant biomass. Journal of Bioprocess Engineering and Biorefinery, 3, 40–49.CrossRefGoogle Scholar
  4. 4.
    EIA U.S. Energy Information Administration, (2013). U.S. ethanol production and the Renewable Fuel Standard RIN bank. Available from: Accessed Jun. 5. 2013.
  5. 5.
    Renewable Fuels Association, (2007). Ethanol industry outlook 2007: building new horizons. Washington, D. C., US.Google Scholar
  6. 6.
    Bothast, R. J., & Schlicher, M. A. (2005). Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 67, 19–25.CrossRefGoogle Scholar
  7. 7.
    Kress, C. A. (2014). Estimated U.S. dried distillers grain with solubles (DDGS) production & use. Iowa:Iowa State University of Science and Technology.Google Scholar
  8. 8.
    Renewable Fuels Association, (2014). Industry resources: co-products. Washington, D. C., US.Google Scholar
  9. 9.
    Irwin, S.H. (2014). Recent trends in the profitability of ethanol production. Department of Agricultural and Consumer Economics, University of Illinois. Avaliable from: Accessed March 14 20148
  10. 10.
    Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X. L., Balan, V., Dale, B., & Cotta, M. A. (2008). Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresource Technology, 99, 5216–5225.CrossRefGoogle Scholar
  11. 11.
    Ladisch, M., Dale, B., Tyner, W., Mosier, N., Kim, Y., Cotta, M., Dien, B., Blascheck, H., Laurenas, E., Shanks, B., Verkade, J., Schell, C., & Petersen, G. (2008). Cellulose conversion in dry grind ethanol plants. Bioresource Technology, 99, 5157–5159.CrossRefGoogle Scholar
  12. 12.
    Shi, J. B., Yang, Q. L., Lin, L., Gong, Y., Pang, C. S., & Xie, T. J. (2012). The structural characterization of corn stalks hemicelluloses during active oxygen cooking as a pretreatment for biomass conversion. BioResources, 7, 5236–5246.Google Scholar
  13. 13.
    Weil, J. R., Sarikaya, A., Rau, S. L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., & Ladisch, M. R. (1998). Pretreatment of corn fiber by pressure cooking in water. Applied Biochemistry and Biotechnology, 73, 1–17.CrossRefGoogle Scholar
  14. 14.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. R. (2005). Feature of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 674–686.Google Scholar
  15. 15.
    Tucker, M. P., Nagle, N. J., Jennings, E. W., Ibsen, K. N., Aden, A., Nguyen, Q. A., Kim, K. H., & Noll, S. L. (2004). Conversion of distiller’s grain into fuel alcohol and a higher-value animal feed by dilute-acid pretreatment. Applied Biochemistry and Biotechnology, 115, 1139–1159.CrossRefGoogle Scholar
  16. 16.
    Fonseca, D. A., Lupitskyy, R., Timmons, D., Gupta, M., & Satyavolu, J. (2014). Towards integrated biorefinery from dried distillers grains: selective extraction of pentoses using dilute acid hydrolysis. Biomass and Bioenergy, 71, 178–186.CrossRefGoogle Scholar
  17. 17.
    Noureddini, H., & Byun, J. (2010). Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresource Technology, 101, 1060–1067.CrossRefGoogle Scholar
  18. 18.
    Yan, J. P., Kiemle, D., & Liu, S. J. (2015). Quantification of xylooligomers in hot water wood extract by 1H–13C heteronuclear single quantum coherence NMR. Carbohydrate Polymers, 117, 903–909.CrossRefGoogle Scholar
  19. 19.
    Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P., & Sun, R. C. (2009). Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. Journal of Agricultural and Food Chemistry, 57, 6305–6317.CrossRefGoogle Scholar
  20. 20.
    Sun, S. N., Yuan, T. Q., Li, M. F., Cao, X. F., Xu, F., & Liu, Q. Y. (2012). Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus affinis). Cellulose Chemistry and Technology, 46, 165–176.Google Scholar
  21. 21.
    Lüers, H. Z. (1930). Das Celluloseverzuckerungsverfahren von H. Scholler. Angewandte Chemie, 43, 455–458.CrossRefGoogle Scholar
  22. 22.
    Saeman, J. F. (1945). Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry, 37, 43–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Paper and Bioprocess EngineeringState University of New York–College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations