Advertisement

Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 148–161 | Cite as

Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis

  • Siba Soren
  • Soumya Ranjan Jena
  • Luna Samanta
  • Purnendu ParhiEmail author
Article

Abstract

Monodispersed cerium oxide nanoparticle has been synthesized by microwave-mediated hydrothermal as well as microwave-mediated solvothermal synthesis. X-ray diffraction (XRD) data shows that the synthesized particles are single phase. SEM and TEM analysis suggest that particle synthesized by microwave-mediated solvothermal method are less agglomerated. In vitro toxicology study of the synthesized nanoceria particles has shown good free radical scavenging activity for NO and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayed except superoxide radical within a concentration range of 25 to 75 ng ml−1. Nanoceria particle also showed inhibition of Fe-ascorbate-induced lipid peroxidation (LPx) in chick liver mitochondrial fractions. Solvothermally synthesized nanoceria showed better protection against Fe-ascorbate-induced LPx than the hydrothermal one while the hydrothermally synthesized nanoceria showed better DPPH and NO scavenging activity. The ceria nanoparticles also prevented Fe-ascorbate-H2O2-induced carbonylation of bovine serum albumin in a dose-dependent manner. At higher concentration, i.e., 100 ng ml−1, the synthesized nanoparticles showed a reverse trend in all the parameters measured indicating its toxicity at higher doses.

Keywords

Nanoparticle Cerium oxide Toxicology Microwave Free radical scavenging 

Notes

Acknowledgments

Purnendu Parhi acknowledges Department of Science and Technology (DST), project no. SR/FT/CS-91/2011 for funding. Siba Soren acknowledges Rajiv Gandhi Fellowship sponsored by UGC, New Delhi, for fellowship. Author acknowledges the Department of Chemistry and Department of Zoology Ravenshaw University for support.

References

  1. 1.
    El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 34(4), 257–264.CrossRefGoogle Scholar
  2. 2.
    Chen, S., & Yang, Y. (2002). Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. Journal of the American Chemical Society, 124(19), 5280–5281.CrossRefGoogle Scholar
  3. 3.
    Lewis, L. N. (1993). Chemical catalysis by colloids and clusters. Chemical Reviews, 93(8), 2693–2730.CrossRefGoogle Scholar
  4. 4.
    Chen, M. S., & Goodman, D. W. (2004). The structure of catalytically active gold on titania. Science, 306, 252–255.CrossRefGoogle Scholar
  5. 5.
    Kim, S. W., Kim, M., Lee, W. Y., & Hyeon, T. (2002). Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. Journal of the American Chemical Society, 124(26), 7642–7643.CrossRefGoogle Scholar
  6. 6.
    Chen, H. M., Chen, C. K., Chang, Y. C., Tsai, C. W., Liu, R. S., Hu, S. F., Chang, W. S., & Chen, K. H. (2010). Monolayer-quantum dots sensitized zno nanowires-array photoelectrodes: true efficiency for water splitting. Angewandte Chemie International Edition, 49(34), 5966–5969.CrossRefGoogle Scholar
  7. 7.
    Sinha, A. K., Seelan, S., Tsubota, S., & Haruta, M. A. (2004). A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion. Angewandte Chemie International Edition, 43(12), 1546–1548.CrossRefGoogle Scholar
  8. 8.
    Valden, M., Lai, X., & Goodman, D. W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281(5383), 1647–1650.CrossRefGoogle Scholar
  9. 9.
    Zhou, S., Mcllwrath, K., Jackson, G., & Eichhorn, B. (2006). Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. Journal of the American Chemical Society, 128(6), 1780–1781.CrossRefGoogle Scholar
  10. 10.
    Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103–106.CrossRefGoogle Scholar
  11. 11.
    Chen, H. M., Liu, R. S., Li, H., & Zeng, H. C. (2006). Generating isotropic superparamagnetic interconnectivity for the two-dimensional organization of nanostructured building blocks. Angewandte Chemie International Edition, 45(17), 2713–2717.CrossRefGoogle Scholar
  12. 12.
    Charles Cao, Y. W., Jin, R., & Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297(5586), 1536–1540.CrossRefGoogle Scholar
  13. 13.
    Taton, T. A., Mirkin, C. A., & Letsinger, R. L. (2000). Scanometric DNA array detection with nanoparticle probes. Science, 289(5485), 1757–1760.CrossRefGoogle Scholar
  14. 14.
    Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277(5329), 1078–1081.CrossRefGoogle Scholar
  15. 15.
    Park, S. J., Taton, T. A., & Mirkin, C. A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science, 295(5559), 1503–1506.Google Scholar
  16. 16.
    Kamat, P. V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 106(32), 7729–7744.CrossRefGoogle Scholar
  17. 17.
    Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 312(5776), 1027–1030.CrossRefGoogle Scholar
  18. 18.
    Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science, 275(5303), 1102–1106.CrossRefGoogle Scholar
  19. 19.
    Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.CrossRefGoogle Scholar
  20. 20.
    Warheit, D. B., Webb, T. R., Reed, K. L., Frerichs, S., & Sayes, C. M. (2007). Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology, 230(1), 90–104.CrossRefGoogle Scholar
  21. 21.
    Limbach, L. K., Li, Y., Grass, R. N., Brunner, T. J., Hintermann, M. A., Muller, M., Gunther, D., & Stark, W. J. (2005). Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 39(23), 9370–9376.CrossRefGoogle Scholar
  22. 22.
    Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 14(10), 1056–1058.CrossRefGoogle Scholar
  23. 23.
    Heckert, E. G., Karakoti, A. S., Seal, S., & Self, W. T. (2008). The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 29(18), 2705–2709.CrossRefGoogle Scholar
  24. 24.
    Robinson, R. D., Spanier, J. E., Zhang, F., Chan, S.-W., & Herman, I. P. (2002). Visible thermal emission from sub-band-gap laser excited cerium dioxide particles. Journal of Applied Physics, 92(4), 1936–1941.CrossRefGoogle Scholar
  25. 25.
    Deshpande, S., Patil, S., Kuchibhatla, S. V. N. T., & Seal, S. (2005). Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 87(13), 133113:1–3.CrossRefGoogle Scholar
  26. 26.
    Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., & Rosei, R. (2005). Electron localization determines defect formation on ceria substrates. Science, 309(5735), 752–755.CrossRefGoogle Scholar
  27. 27.
    Chen, J., Patil, S., Seal, S., & McGinnis, J. F. (2006). Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotechnology, 1(2), 142–150.CrossRefGoogle Scholar
  28. 28.
    Karakoti, A. S., Singh, S., Kumar, A., Malinska, M., Kuchibhatla, S. V. N. T., Wozniak, K., Self, W. T., & Seal, S. (2009). PEGylated nanoceria as radical scavenger with tunable redox chemistry. Journal of the American Chemical Society, 131(40), 14144–14145.CrossRefGoogle Scholar
  29. 29.
    Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., King, J. E., Seal, S., & Self, W. T. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 46(16), 2736–2738.CrossRefGoogle Scholar
  30. 30.
    Celardo, I., Pedersen, J. Z., Traversa, E., & Ghibelli, L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3(4), 1411–1420.CrossRefGoogle Scholar
  31. 31.
    Perez, J. M., Asati, A., Nath, S., & Kaittanis, C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small, 4(5), 552–556.CrossRefGoogle Scholar
  32. 32.
    Hirst, S. M., Karakoti, A., Singh, S., Self, W., Tyler, R., Seal, S., & Reilly, C. M. (2013). Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environmental Toxicology, 28(2), 107–118.CrossRefGoogle Scholar
  33. 33.
    Cai, X., Seal, S., & McGinnis, J. F. (2014). Sustained inhibition of neovascularization in vldlr −/− mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials, 35(1), 249–258.CrossRefGoogle Scholar
  34. 34.
    Das, S., Singh, S., Dowding, J. M., Oommen, S., Kumar, A., Sayle, T. X. T., Saraf, S., Patra, C. R., Vlahakis, N. E., Sayle, D. C., Self, W. T., & Seal, S. (2012). The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials, 33(31), 7746–7755.CrossRefGoogle Scholar
  35. 35.
    Zheng, F., Jin, Q., & Chen, S. W. (2004). Ceria nanoparticles: size, size distribution, and shape. Journal of Applied Physics, 95(8), 4319–4323.CrossRefGoogle Scholar
  36. 36.
    Czerwinski, F., & Szpunar, J. A. (1997). The nanocrystalline ceria sol-gel coatings for high temperature applications. Journal of Sol-Gel Science and Technology, 9(1), 103–114.Google Scholar
  37. 37.
    Wang, Z. L., & Feng, X. (2003). Polyhedral shapes of CeO2 nanoparticles. The Journal of Physical Chemistry B, 107(49), 13563–13566.CrossRefGoogle Scholar
  38. 38.
    Zhitomirsky, I., & Petric, A. (2001). Electrochemical deposition of ceria and doped ceria Films. Ceramics International, 27(2), 149–155.CrossRefGoogle Scholar
  39. 39.
    Satyamurthy, S., Leonard, K. J., Dabestani, R. T., & Paranthaman, M. P. (2005). Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology, 16(9), 1960–1964.CrossRefGoogle Scholar
  40. 40.
    Sakthivel, T., Das, S., Kumar, A., Reid, D. L., Gupta, A., Sayle, D. C., & Seal, S. (2013). Morphological phase diagram of biocatalytically active ceria nanostructures as a function of processing variables and their properties. ChemPlusChem, 78(12), 1446–1455.CrossRefGoogle Scholar
  41. 41.
    Araujo, V. D., Avansi, W., de Carvalho, H. B., Moreira, M. L., Longo, E., Ribeiro, C., & Bernardi, M. I. B. (2012). CeO2 nanoparticles synthesized by a microwave assisted hydrotrhermal method:evolution from nanosphere to nanorod. Crystal Engineering Communications, 14(3), 1150–1154.CrossRefGoogle Scholar
  42. 42.
    Das, K., Samanta, L., & Chainy, G. B. N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formations by superoxide radicals. Indian Journal of Biochemistry and Biophysics, 37(3), 201–204.Google Scholar
  43. 43.
    Garrat, D. C. (1964). “In: The quantitative analysis of drug” Chapman and Hall. Japan, 3, 456–458.Google Scholar
  44. 44.
    Samanta, L., & Chainy, G. B. N. (1997). Comparison of hexa chloro cyclohexane-induced oxidative stress in the testis of immature and adult rats—general considerations. Comparative Biochemistry and Physiology, 118C(3), 319–327.Google Scholar
  45. 45.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.CrossRefGoogle Scholar
  46. 46.
    Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Methods in Enzymology, 186, 464–478.CrossRefGoogle Scholar
  47. 47.
    Fridovich, I. (1986). Oxygen Radicals, Hydrogen peroxide and oxygen toxicity. Free Radicals and Biology. Pryor, W. A. New York, AcademicPress., 1, 239-246.Google Scholar
  48. 48.
    Denicola, A., Souza, J. M., & Radi, R. (1998). Diffusion of peroxynitrite across erythrocyte membranes. Proceedings of the National Academy of Science, 95(7), 3566–3571.CrossRefGoogle Scholar
  49. 49.
    Marla, S. S., Lee, J., & Groves, J. T. (1997). Peroxynitrite rapidly permeates phospholipid membranes. Proceedings of the National Academy of Science, 94(26), 14243–14248.CrossRefGoogle Scholar
  50. 50.
    Moncada, S., Palmer, R. M., & Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharma Review, 43(2), 109–142.Google Scholar
  51. 51.
    Tylor, B. S., Kion, Y. M., Wang, Q. I., Sharpio, R. A., Billiar, T. R., & Geller, D. A. (1997). Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. Archives of Surgery, 132, 1177–1183.CrossRefGoogle Scholar
  52. 52.
    Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329(1-2), 23–38.CrossRefGoogle Scholar
  53. 53.
    Madian, A. G., & Regnier, F. E. (2010). Proteomic identification of carbonylated proteins and their oxidation sites. Journal of Proteome Research, 9(8), 3766–3780.CrossRefGoogle Scholar
  54. 54.
    Rao, R. S. P., & Moller, I. M. (2011). Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics, 11(21), 4166–4173.CrossRefGoogle Scholar
  55. 55.
    Stadtaman, E. R., & Levine, R. L. (2000). Protein oxidation. Annals of the New York Academy of Sciences, 899, 191–208.CrossRefGoogle Scholar
  56. 56.
    Pignatelli, B., Li, C. Q., Boffetta, P., Chen, Q., Ahrens, W., Nyberg, F., Mukeria, A., Bruske-Hohlfeld, I., Fortes, C., Constantinescu, V., Ischiropoulos, H., & Ohshima, H. (2001). Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Research, 61(2), 778–784.Google Scholar
  57. 57.
    Yilmaz, I. A., Akçay, T., Cakatay, U., Telci, A., Ataus, S., & Yalçin, V. (2003). Relation between bladder cancer and protein oxidation. International Urology and Nephrology, 35(3), 345–350.CrossRefGoogle Scholar
  58. 58.
    Rossner, P., Jr., Terry, M. B., Gammon, M. D., Agrawal, M., Zhang, F. F., Ferris, J. S., Teitelbaum, S. L., Eng, S. M., Gaudet, M. M., Neugut, A. I., & Santella, R. M. (2007). Plasma protein carbonyl levels and breast cancer risk. Journal of Cellular and Molecular Medicine, 11(5), 1138–1148.CrossRefGoogle Scholar
  59. 59.
    Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–406.CrossRefGoogle Scholar
  60. 60.
    Lin, W., Huang, Y. W., Zhou, X. D., & Ma, Y. (2006). Toxicity of cerium oxide nanoparticles in human lung cancer cells. International Journal of Toxicology, 25(6), 451–457.CrossRefGoogle Scholar
  61. 61.
    Babu, S., Velez, A., Wozniak, K., Szydlowska, J., & Seal, S. (2007). Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chemical Physics Letters, 442(4-6), 405–408.CrossRefGoogle Scholar
  62. 62.
    Dowding, J. M., Dosani, T., Kumar, A., Seal, S., & Self, W. T. (2012). Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chemical Communications, 48, 4896–4898.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Siba Soren
    • 1
  • Soumya Ranjan Jena
    • 2
  • Luna Samanta
    • 2
  • Purnendu Parhi
    • 1
    Email author
  1. 1.Department of ChemistryRavenshaw UniversityCuttackIndia
  2. 2.Department of ZoologyRavenshaw UniversityCuttackIndia

Personalised recommendations