Skip to main content
Log in

Purification and Molecular Characterization of the Novel Highly Potent Bacteriocin TSU4 Produced by Lactobacillus animalis TSU4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial infections causing fish diseases and spoilage during fish food processing and storage are major concerns in aquaculture. Use of bacteriocins has recently been considered as an effective strategy for prevention of bacterial infections. A novel bacteriocin produced by Catla catla gut isolates, Lactobacillus animalis TSU4, designated as bacteriocin TSU4 was purified to homogeneity by a three-step protocol. The molecular mass of bacteriocin TSU4 was 4117 Da determined by Q-TOF LC/MS analysis. Its isoelectric point was ~9. Secondary conformation obtained by circular dichroism spectroscopy showed molecular conformation with significant proportions of the structure in α-helix (23.7 %) and β-sheets (17.1 %). N-terminal sequencing was carried out by the Edman degradation method; partial sequence identified was NH2-SMSGFSKPHD. Bacteriocin TSU4 exhibited a wide range of antimicrobial activity, pH and thermal stability. It showed a bacteriocidal mode of action against the indicator strain Aeromonas hydrophila MTCC 646. Bacteriocin TSU4 is the first reported bacteriocin produced by fish isolate Lactobacillus animalis. The characterization of bacteriocin TSU4 suggested that it is a novel bacteriocin with potential value against infections of bacteria such as A. hydrophila MTCC 646 and Pseudomonas aeruginosa MTCC 1688 and application to prevent spoilage during food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113, 723–736.

    Article  CAS  Google Scholar 

  2. Singh, N., & Abraham, J. (2014). Ribosomally synthesized peptides from natural sources. The Journal of Antibiotics, 67, 277–289.

    Article  CAS  Google Scholar 

  3. Bali, V., Panesar, P. S., Bera, M. B., & Kennedy, J. F. (2014). Bacteriocins: recent trends and potential applications. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2012.729231.

    Google Scholar 

  4. Chahad, O. B., Bour, M. E., Calo-Mata, P., Boudabous, A., & Barros-Velazquez, J. (2012). Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Research in Microbiology, 163, 44–54.

    Article  CAS  Google Scholar 

  5. Sugita, H., Matsuo, N., Hirose, Y., Iwato, M., & Deguchi, Y. (1997). Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Applied and Environmental Microbiology, 63, 4986–4989.

    CAS  Google Scholar 

  6. Balcazar, J. L., De Blas, I., Ruiz-Zarzuela, I., & Vendrell, D. (2007). Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunology and Medical Microbiology, 51, 185–193.

    Article  CAS  Google Scholar 

  7. Ghosh, S., Ringo, E., Selvam, A. D. G., Rahiman, K. M. M., Sathyan, N., Nifty, J., et al. (2014). Gut associated lactic acid bacteria isolated from the estuarine fish Mugil cephalus: molecular diversity and antibacterial activities against pathogens. International Journal of Aquaculture, 4, 1–11. doi:10.5376/ija.2014.04.0001.

    Google Scholar 

  8. Calo-Mata, P., Arlindo, S., Boehme, K., & de Miguel, T. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63.

    Article  Google Scholar 

  9. Giri, S. S., Sukumaran, V., Sen, S. S., & Vinumonia, J. (2011). Antagonistic activity of cellular components of potential probiotic bacteria, isolated from the gut of Labeo rohita, against Aeromonas hydrophila. Probiotics and Antimicrobial Proteins, 3, 214–222.

    Article  CAS  Google Scholar 

  10. Holck, A., Axelssons, L., Birkeland, S. E., Aukrust, T., & Blom, H. (1992). Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. Journal of General Microbiology, 138, 2715–2720.

    Article  CAS  Google Scholar 

  11. Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G., et al. (2013). Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems. doi:10.1186/2046-9063-9-12.

    Google Scholar 

  12. Amortegui, J., Rodríguez-López, A., Rodríguez, D., Carrascal, A. K., Alméciga-Díaz, C. J., Melendez, A. D. P., et al. (2014). Characterization of a new bacteriocin from Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0757-x.

    Google Scholar 

  13. Sahoo, T. K., Jena, P. K., Patel, A. K., & Seshadri, S. (2014). Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquaculture Research. doi:10.1111/are.12556.

    Google Scholar 

  14. Messi, P., Guerrieri, E., & Bondi, M. (2003). Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiology Letters, 220, 121–125.

    Article  CAS  Google Scholar 

  15. Sahoo, T. K., Jena, P. K., Nagar, N., Patel, A. K., & Seshadri, S. (2015). In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics and Antimicrobial Proteins. doi:10.1007/s12602-015-9184-8.

    Google Scholar 

  16. Stoffels, G., Nissen-Meyer, J., Gudmundsdottir, A., & Sletten, K. (1992). Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Journal of Bacteriology, 73, 309–316.

    CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Uteng, M., Hauge, H. H., Brondz, I., Nissen-Meyer, J., & Fimland, G. (2002). Purification and characterization of a novel class IIa bacteriocin, piscicocin CS526, from surimi-associated Carnobacterium piscicola CS526. Applied and Environmental Microbiology, 68, 952–956.

    Article  CAS  Google Scholar 

  19. Schagger, H., & Jagow, G. V. (1987). Tricine–sodium dodecyl sulphate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  CAS  Google Scholar 

  20. Dimitrijevic, R., Stojanovic, M., Ivkovic, I. Z., Petersen, A., Jankov, R. M., Dimitrijevic, L., et al. (2009). The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. Journal of Applied Microbiology, 107, 2108–2115.

    Article  CAS  Google Scholar 

  21. Tiwari, S. K., & Srivastava, S. (2008). Purification and characterization of plantaricin LR14: a novel bacteriocin produced by Lactobacillus plantarum LR/14. Applied Microbiology and Biotechnology, 79, 759–767.

    Article  CAS  Google Scholar 

  22. Netz, D. J. A., Pohl, R., Beck-Sickinger, A. G., Selmer, T., Pierik, A. J., Bastos, M. D. C. D. F., et al. (2002). Biochemical characterization and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. Journal of Molecular Biology, 319, 745–756.

    Article  CAS  Google Scholar 

  23. Rogers, A. M., & Montville, T. J. (1991). Improved agar diffusion assay for nisin quantification. Food Biotechnology, 5, 161–168.

    Article  CAS  Google Scholar 

  24. Jena, P. K., Trivedi, D., Chaudhary, H., Sahoo, T. K., & Seshadri, S. (2013). Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of Wistar Rat (Rattus norvegicus): partial purification and characterization of bacteriocin. Applied Biochemistry and Biotechnology, 169, 2088–2100.

    Article  CAS  Google Scholar 

  25. Ghanbari, M., Jami, M., Kneifel, W., & Domig, K. J. (2013). Antimicrobial activity and partial characterization of bacteriocins produced by lactobacilli isolated from Sturgeon fish. Food Control, 32, 379–385.

    Article  CAS  Google Scholar 

  26. Yanagida, F., Chen, Y., & Shinohara, T. (2006). Searching for bacteriocin-producing lactic acid bacteria in soil. The Journal of General and Applied Microbiology, 52, 21–28.

    Article  CAS  Google Scholar 

  27. Maldonado, A., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (2003). Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Applied and Environmental Microbiology, 69, 383–389.

    Article  CAS  Google Scholar 

  28. Yamazaki, K., Suzuki, M., Kawai, Y., Inoue, N., & Montville, T. J. (2005). Purification and characterization of a novel class IIa bacteriocin, Piscicocin CS526, from surimi-associated Carnobacterium piscicola CS526. Applied and Environmental Microbiology, 71, 554–557.

    Article  CAS  Google Scholar 

  29. Bendjeddou, K., Fons, M., Strocker, P., & Sadoun, D. (2012). Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens. World Journal of Microbiology and Biotechnology, 28, 1543–1552.

    Article  CAS  Google Scholar 

  30. Ray, B., Miller, K. W., & Jain, M. K. (2001). Bacteriocins of lactic acid bacteria: current perspectives. Indian Journal of Microbiology, 41, 1–21.

    Google Scholar 

  31. Gonda, D. K., Bachmair, A., Wunnin, I., & Tobias, J. W. (1989). Universality and structure of the N-end rule. The Journal of Biological Chemistry, 264, 16700–16712.

    CAS  Google Scholar 

  32. Chen, Y., Wang, Y., Chow, Y., & Yanagida, F. (2014). Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510. Achieves of Microbiology, 196, 193–199.

    CAS  Google Scholar 

  33. Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiology Reviews, 24, 85–106.

    Article  CAS  Google Scholar 

  34. Cotter, P. D., Hill, C., & Ross, P. R. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Article  CAS  Google Scholar 

  35. Breukink, E., & de Kruijff, B. (2006). Lipid II as a target for antibiotics. Nature Reviews Drug Discovery, 5, 321–323.

    Article  CAS  Google Scholar 

  36. Hu, P., Dang, Y., Liu, B., & Lu, X. (2014). Purification and partial characterization of a novel bacteriocin produced by Lactobacillus casei TN-2 isolated from fermented camel milk (Shubat) of Xinjiang Uygur Autonomous region, China. Food Control. doi:10.1016/j.foodcont.2014.03.020.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Intas Pharmaceutical Limited (Biopharma Division), Nirma Education and Research Foundation (NERF), Ahmedabad (India) and School of Life Sciences, Sambalpur University, Sambalpur (India), for providing research and infrastructure facilities. The authors are also thankful to Mr. Rajender Jena, Ph.D. Scholar, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (India), for his technical support.

Conflict of Interest

There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amiya Kumar Patel or Sriram Seshadri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, T.K., Jena, P.K., Patel, A.K. et al. Purification and Molecular Characterization of the Novel Highly Potent Bacteriocin TSU4 Produced by Lactobacillus animalis TSU4. Appl Biochem Biotechnol 177, 90–104 (2015). https://doi.org/10.1007/s12010-015-1730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1730-z

Keywords

Navigation