Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 76–89 | Cite as

Covalently Immobilized Laccase for Decolourization of Glucose-Glycine Maillard Products as Colourant of Distillery Wastewater

  • Nimisha Singh
  • Subhankar BasuEmail author
  • Ivo F. J. Vankelecom
  • Malini Balakrishnan


Maillard reaction products like melanoidins are recalcitrant, high-molecular-weight compounds responsible for colour in sugarcane molasses distillery wastewater. Conventional biological treatment is unable to break down melanoidins, but extracellular laccase and manganese peroxidase of microbial origin can degrade these complex molecules. In this work, laccase was covalently immobilized on alumina pellets activated with aminopropyltriethoxysilane (APTES). The immobilization yield was 50–60 %, and the enzyme activity (886 U/L) was 5-fold higher compared to the soluble enzyme (176 U/L). The immobilized enzyme also showed higher tolerance to pH (4–6) and temperature (35–60 °C), as well as improved storage stability (49 days) and operational stability (10 cycles). Degradation of glucose-glycine Maillard products using immobilized laccase led to 47 % decolourization in 6 h at pH 4.5 and 28 °C. A comprehensive treatment scheme integrating enzymatic, microbial and membrane filtration steps resulted in 90 % decolourization.


Maillard products Wastewater Laccase Immobilization Biodegradation Ultrafiltration 



This work was supported by the Department of Science and Technology, Government of India (No. W-11035/25/2010-R&D/W.Q), and Research Foundation Flanders (FWO) for the Indigo-funding (G.0808.10N) and a membrane fouling project (FWO G.0808.10N), the Government of Belgium, for an I.A.P-P.A.I. grant (IAP 7/05 FS2) and the KU Leuven Research Council for an IOF-knowledge platform (IKP/10/002 IOF). The supply of enzyme from Novozymes, India, is gratefully acknowledged. We thank Dr Prem Dureja (The Energy and Resources Institute, New Delhi, India) for the GC-MS analysis.

Supplementary material

12010_2015_1729_MOESM1_ESM.doc (130 kb)
ESM 1 (DOC 129 kb)


  1. 1.
    Wedzicha, B. L., & Kaputo, M. T. (1992). Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphite ion. Food Chemistry, 43, 359–367.CrossRefGoogle Scholar
  2. 2.
    Reynolds, T. M. (1963). Chemistry of non-enzymatic browning of the reaction between aldoses and amines. In Advances in Food Research (Vol. 2, pp. 1–52). New York: Academic Press.Google Scholar
  3. 3.
    Morales, F., & Jimenez-Perez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to color and fluorescence. Food Chemistry, 72, 119–125.CrossRefGoogle Scholar
  4. 4.
    Cämmerer, B., Jalyschkov, V., & Kroh, L. W. (2002). Carbohydrate structures as part of the melanoidin skeleton. International Congress Series, 1245, 269–273.CrossRefGoogle Scholar
  5. 5.
    Manisankar, P., Rani, C., & Vishwanathan, S. (2004). Effect of halides in the electrochemical treatment of distillery effluent. Chemosphere, 57(8), 961–966.CrossRefGoogle Scholar
  6. 6.
    Chavan, M. N., Kulkarni, M. V., Zope, V. P., & Mahulikar, P. P. (2006). Microbial degradation of melanoidins in distillery spent wash by an indigenous isolate. Indian Journal of Biotechnology, 5(3), 416–421.Google Scholar
  7. 7.
    Yadav, S., & Chandra, R. (2012). Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation, 23(4), 609–620.CrossRefGoogle Scholar
  8. 8.
    Yadav, S., Chandra, R., & Rai, V. (2011). Characterization of potential MnP producing bacteria and its metabolic products during decolourisation of synthetic melanoidins due to biostimulatory effect of d-xylose at stationary phase. Process Biochemistry, 46(9), 1774–1784.CrossRefGoogle Scholar
  9. 9.
    Yadav, S., & Chandra, R. (2013). Detection of persistent organic compounds from biomethanated distillery spent wash (BMDS) and their degradation by manganese peroxidase and laccase producing bacterial strains. Journal of Environmental Biology, 34, 755–764.Google Scholar
  10. 10.
    Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2536–2605.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., & Xie, G. (2012). Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 115, 21–26.CrossRefGoogle Scholar
  12. 12.
    Cristovao, R. A., Tavares, A. P. M., Brigida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72, 6–12.CrossRefGoogle Scholar
  13. 13.
    Wang, F., Guo, C., Yang, L., & Liu, C. Z. (2010). Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresource Technology, 101, 8931–8935.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Kaskel, S., Shi, J., Wage, T., & van Pee, K. H. (2007). Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chemistry of Materials, 19, 6408–6413.CrossRefGoogle Scholar
  15. 15.
    Zille, A., Tzanov, T., Gübitz, G. M., & Cavaco-Paulo, A. (2003). Immobilized laccase for decolourization of reactive black 5 dyeing effluent. Biotechnology Letters, 25(17), 1473–1477.CrossRefGoogle Scholar
  16. 16.
    Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., & Inagaki, S. (2001). Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous and Mesoporous Materials, 44–45, 755–762.CrossRefGoogle Scholar
  17. 17.
    Wang, F., Hu, Y., Guo, C., Huang, W., & Liu, C. Z. (2012). Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresource Technology, 110, 120–1244.CrossRefGoogle Scholar
  18. 18.
    Bayramoğlu, G., Yilmaz, M., & Arica, M. Y. (2010). Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes. Bioresource Technology, 101(17), 6615–6621.CrossRefGoogle Scholar
  19. 19.
    Costa, S. A., Tzanov, T., Paar, A., Gudelj, M., Gübitz, G. M., & Cavaco-Paulo, A. (2001). Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme and Microbial Technology, 28(9-10), 815–819.CrossRefGoogle Scholar
  20. 20.
    Arica, M. Y., Altintas, B., & Bayramoglu, G. (2009). Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads: application for textile dye degradation. Bioresource Technology, 100, 665–669.CrossRefGoogle Scholar
  21. 21.
    Fernando, B. L., Morales, G., & Sanz, R. (2010). Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresource Technology, 101, 8541–8548.CrossRefGoogle Scholar
  22. 22.
    Dahiya, J., Singh, D., & Nigam, P. (2001). Decolourisation of molasses wastewater by cells of Pseudomonas fluorescens immobilised on porous cellulose carrier. Bioresource Technology, 78(1), 111–114.CrossRefGoogle Scholar
  23. 23.
    Basri, H., Ismail, A. F., & Aziz, M. (2011). Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination, 273, 72–80.CrossRefGoogle Scholar
  24. 24.
    APHA. (1995). Standard method for the examination of water and wastewater, 19th ed (pp. 512–513). Washington, DC: American Public Health Association. 5220B.Google Scholar
  25. 25.
    Wei, J., Shi, J., Pan, H., Su, Q., Zhu, J., & Shi, Y. (2009). Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation. Microporous and Mesoporous Materials, 117, 596–602.CrossRefGoogle Scholar
  26. 26.
    Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., & Shi, Y. (2008). Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous and Mesoporous Materials, 116, 394–399.CrossRefGoogle Scholar
  27. 27.
    Guisan, J. M., Melo, F. V., & Ballesteros, A. (1981). Determination of intrinsic properties of immobilized enzymes. Applied Biochemistry and Biotechnology, 6, 25–36.CrossRefGoogle Scholar
  28. 28.
    Dehghanifard, E., Jafari, A. J., Kalantary, R. R., Mahvi, A. H., Faramarzi, M. A., & Esrafili, A. (2013). Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian Journal of Environmental Health Science and Engineering, 10, 25–35.CrossRefGoogle Scholar
  29. 29.
    Nicolucci, C., Rossi, S., Menale, C., Godjevargova, T., Ivanov, Y., & Bianco, M. (2011). Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation, 22(3), 673–683.CrossRefGoogle Scholar
  30. 30.
    Champagne, P. P., & Ramsay, J. (2010). Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technology, 101(7), 2230–2235.CrossRefGoogle Scholar
  31. 31.
    Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43(2), 169–178.CrossRefGoogle Scholar
  32. 32.
    Kato, H., & Tsuchida, H. (1981). Estimation of melanoidin structure by pyrolysis and oxidation. Progress in Food Nutrition Science, 5, 147–156.Google Scholar
  33. 33.
    Cammerer, B., & Kroh, L. W. (1995). Investigation of the influence of reaction conditions on elementary composition of melanoidins. Food Chemistry, 23, 55–59.CrossRefGoogle Scholar
  34. 34.
    Victorio, J. D., Buquiran, D. P., & Rosario, E. J. (2007). Decolorization of glucose-glycine melanoidin as model color pollutant using ozonation and bacterial treatment. Philippine Journal of Science, 136(1), 65–73.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nimisha Singh
    • 1
  • Subhankar Basu
    • 1
    Email author
  • Ivo F. J. Vankelecom
    • 2
  • Malini Balakrishnan
    • 1
  1. 1.The Energy and Resources Institute (TERI)New DelhiIndia
  2. 2.Centre for Surface Chemistry and CatalysisKU LeuvenLeuvenBelgium

Personalised recommendations