Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 267–277 | Cite as

Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite

  • Anshu Sharma
  • Prem Prakash
  • Kamla Rawat
  • Pratima R. SolankiEmail author
  • H. B. BohidarEmail author


In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.


Gelatin ionogels Antibacterial Antifungal Nanocomposite 



AS acknowledges University Grants Commission, Government of India for research fellowship. KR acknowledges receipt of DST Inspire Faculty Award. This work was supported by a grant received from Department of Science and Technology, Government of India and University Grants Commission for start-up grant.


  1. 1.
    Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Silva Pereira, C. (2011). Ionic liquids: a pathway to environmental acceptability. Chemical Society Reviews, 40, 1383–1403.CrossRefGoogle Scholar
  2. 2.
    Busetti, A., Crawford, D. E., Earle, M. J., Gilea, M. A., Gilmore, B. F., Gorman, S. P., Laverty, G., Lowry, A. F., McLaughlin, M., & Seddon, K. R. (2010). Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chemistry, 12, 420–425.CrossRefGoogle Scholar
  3. 3.
    Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3, 156–164.CrossRefGoogle Scholar
  4. 4.
    Docherty, K. M., & Kulpa, J. C. F. (2005). Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7, 185–189.CrossRefGoogle Scholar
  5. 5.
    Pernak, J., Sobaszkiewicz, K., & Mirska, I. (2003). Anti-microbial activities of ionic liquids. Green Chemistry, 5, 52–56.CrossRefGoogle Scholar
  6. 6.
    Le Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews, 40, 907–925.CrossRefGoogle Scholar
  7. 7.
    Trewyn, B. G., Whitman, C. M., & Lin, V. S. Y. (2004). Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Letters, 4, 2139–2143.CrossRefGoogle Scholar
  8. 8.
    Venkata Nancharaiah, Y., Reddy, G. K. K., Lalithamanasa, P., & Venugopalan, V. P. (2012). The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling, 28, 1141–1149.CrossRefGoogle Scholar
  9. 9.
    Sharma, A., Rawat, K., Solanki, P. R., & Bohidar, H. B. (2015). Gelatin-ionic liquid based platform for glucose detection. Current Topics in Medicinal Chemistry, 15, 1257–1267.CrossRefGoogle Scholar
  10. 10.
    Fujita, K., MacFarlane, D. R., Forsyth, M., Yoshizawa-Fujita, M., Murata, K., Nakamura, N., & Ohno, H. (2007). Biomacromolecules, 8, 2080–2086.CrossRefGoogle Scholar
  11. 11.
    Rawat, K., Pathak, J., & Bohidar, H. B. (2014). Effect of solvent hydrophobicity on gelation kinetics and phase diagram of gelatin ionogels. Soft Matter, 10, 862–872.CrossRefGoogle Scholar
  12. 12.
    He, Y., & Lodge, T. P.(2007). A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chemical Communications, 2732–2734.Google Scholar
  13. 13.
    Ji, X., Held, C., & Sadowski, G. (2014). Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria, 363, 59–65.CrossRefGoogle Scholar
  14. 14.
    Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86, 691–699.CrossRefGoogle Scholar
  15. 15.
    Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44, 223–237.CrossRefGoogle Scholar
  16. 16.
    Staphylococcal skin infections.
  17. 17.
  18. 18.
    Giordano, P., Weber, K., Gesin, G., & Kubert, J. (2007). Skin and skin structure infections: treatment with newer generation fluoroquinolones. Therapeutics and Clinical Risk Management, 3, 309–317.CrossRefGoogle Scholar
  19. 19.
    Khalid, R., & Solan, M. Candida fungus skin infection, in, 2012.
  20. 20.
  21. 21.
    (1978). Handbook of phycological methods: Physiological and biochemical methods. In J. A. Hellebust & J. S. Craigie (Eds.). Cambridge University Press. xi, 512 pp. Price £18.00, Journal of the Marine Biological Association of the United Kingdom, 59 (1979) 809-809.Google Scholar
  22. 22.
    Pujala, R. K., Pawar, N., & Bohidar, H. B. (2011). Universal sol state behavior and gelation kinetics in mixed clay dispersions. Langmuir, 27, 5193–5203.CrossRefGoogle Scholar
  23. 23.
    Cornellas, A., Perez, L., Comelles, F., Ribosa, I., Manresa, A., & Garcia, M. T. (2011). Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. Journal of Colloid and Interface Science, 355, 164–171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Polymer and Biophysics Laboratory, School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Special Center for NanosciencesJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Inter University Accelerator Centre (IUAC)New DelhiIndia

Personalised recommendations