Skip to main content
Log in

Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Silva Pereira, C. (2011). Ionic liquids: a pathway to environmental acceptability. Chemical Society Reviews, 40, 1383–1403.

    Article  CAS  Google Scholar 

  2. Busetti, A., Crawford, D. E., Earle, M. J., Gilea, M. A., Gilmore, B. F., Gorman, S. P., Laverty, G., Lowry, A. F., McLaughlin, M., & Seddon, K. R. (2010). Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chemistry, 12, 420–425.

    Article  CAS  Google Scholar 

  3. Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3, 156–164.

    Article  CAS  Google Scholar 

  4. Docherty, K. M., & Kulpa, J. C. F. (2005). Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7, 185–189.

    Article  CAS  Google Scholar 

  5. Pernak, J., Sobaszkiewicz, K., & Mirska, I. (2003). Anti-microbial activities of ionic liquids. Green Chemistry, 5, 52–56.

    Article  CAS  Google Scholar 

  6. Le Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews, 40, 907–925.

    Article  Google Scholar 

  7. Trewyn, B. G., Whitman, C. M., & Lin, V. S. Y. (2004). Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Letters, 4, 2139–2143.

    Article  CAS  Google Scholar 

  8. Venkata Nancharaiah, Y., Reddy, G. K. K., Lalithamanasa, P., & Venugopalan, V. P. (2012). The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling, 28, 1141–1149.

    Article  CAS  Google Scholar 

  9. Sharma, A., Rawat, K., Solanki, P. R., & Bohidar, H. B. (2015). Gelatin-ionic liquid based platform for glucose detection. Current Topics in Medicinal Chemistry, 15, 1257–1267.

    Article  CAS  Google Scholar 

  10. Fujita, K., MacFarlane, D. R., Forsyth, M., Yoshizawa-Fujita, M., Murata, K., Nakamura, N., & Ohno, H. (2007). Biomacromolecules, 8, 2080–2086.

    Article  CAS  Google Scholar 

  11. Rawat, K., Pathak, J., & Bohidar, H. B. (2014). Effect of solvent hydrophobicity on gelation kinetics and phase diagram of gelatin ionogels. Soft Matter, 10, 862–872.

    Article  CAS  Google Scholar 

  12. He, Y., & Lodge, T. P.(2007). A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chemical Communications, 2732–2734.

  13. Ji, X., Held, C., & Sadowski, G. (2014). Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria, 363, 59–65.

    Article  CAS  Google Scholar 

  14. Rhim, J.-W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86, 691–699.

    Article  CAS  Google Scholar 

  15. Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44, 223–237.

    Article  CAS  Google Scholar 

  16. Staphylococcal skin infections. http://dermnetnz.org/bacterial/staphylococci.html.

  17. Streptococcal skin infections. http://www.dermnetnz.org/bacterial/streptococcal-disease.html.

  18. Giordano, P., Weber, K., Gesin, G., & Kubert, J. (2007). Skin and skin structure infections: treatment with newer generation fluoroquinolones. Therapeutics and Clinical Risk Management, 3, 309–317.

    Article  CAS  Google Scholar 

  19. Khalid, R., & Solan, M. Candida fungus skin infection, in, 2012. http://www.healthline.com/health/skin/candida-fungus#Overview1.

  20. Aspergillosis. http://www.dermnetnz.org/fungal/aspergillosis.html.

  21. (1978). Handbook of phycological methods: Physiological and biochemical methods. In J. A. Hellebust & J. S. Craigie (Eds.). Cambridge University Press. xi, 512 pp. Price £18.00, Journal of the Marine Biological Association of the United Kingdom, 59 (1979) 809-809.

  22. Pujala, R. K., Pawar, N., & Bohidar, H. B. (2011). Universal sol state behavior and gelation kinetics in mixed clay dispersions. Langmuir, 27, 5193–5203.

    Article  CAS  Google Scholar 

  23. Cornellas, A., Perez, L., Comelles, F., Ribosa, I., Manresa, A., & Garcia, M. T. (2011). Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. Journal of Colloid and Interface Science, 355, 164–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AS acknowledges University Grants Commission, Government of India for research fellowship. KR acknowledges receipt of DST Inspire Faculty Award. This work was supported by a grant received from Department of Science and Technology, Government of India and University Grants Commission for start-up grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratima R. Solanki or H. B. Bohidar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Prakash, P., Rawat, K. et al. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite. Appl Biochem Biotechnol 177, 267–277 (2015). https://doi.org/10.1007/s12010-015-1727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1727-7

Keywords

Navigation