Applied Biochemistry and Biotechnology

, Volume 177, Issue 1, pp 18–35 | Cite as

Characterization and In Vitro Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Activities of Chitosans Extracted from Three Different Marine Sources

  • Sawssen HajjiEmail author
  • Islem Younes
  • Marguerite Rinaudo
  • Kemel Jellouli
  • Moncef Nasri


Chitins in the α and β isomorphs were extracted from three Tunisian marine sources shrimp (Penaeus kerathurus) waste, crab (Carcinus mediterraneus) shells and cuttlefish (Sepia officinalis) bones. The obtained chitins were transformed into chitosans, the acid-soluble form of chitin. Chitosans were characterized and their biological activities were compared. Chitosan samples were then characterized by Fourier transform infrared spectroscopy (FTIR). The results showed that all chitosans presented identical spectra. Antimicrobial, antioxidant, and antitumor activities of the extracted chitosans were investigated. In fact, cuttlefish chitosan showed the highest DPPH radical-scavenging activity (83 %, 5 mg/ml), whereas it was 79 % and 76 % for shrimp and crab chitosans, respectively. However, in linoleate−β−carotene system, cuttlefish and crab chitosans exerted higher antioxidant activity (82 % and 70 %, respectively), than shrimp chitosan (49 %). Chitosans were tested for their antimicrobial activities against three Gram-negative and four Gram-positive bacteria and five fungi. Chitosans markedly inhibited growth of most bacteria and fungi tested, although the antimicrobial activity depends on the type of microorganism and on the source of chitin. In addition, chitosans showed high antitumor activity which seemed to be dependent on the chitosan characteristics such as acetylation degree and especially the molecular weight.


Chitin Chitosan Antitumor Antimicrobial Antioxidant activity 



This work was supported by grants from Ministry of Higher Education and Scientific Research, Tunisia.


  1. 1.
    Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641–678.CrossRefGoogle Scholar
  2. 2.
    Ngo, D. N., Qian, Z. J., Je, J. Y., Kim, M. M., & Kim, S. K. (2008). Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochemistry, 43, 119–123.CrossRefGoogle Scholar
  3. 3.
    Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13, 1133–1174.CrossRefGoogle Scholar
  4. 4.
    Jayakumar, R., New, N., Tokura, S., & Tamura, H. (2007). Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40(3), 175–181.CrossRefGoogle Scholar
  5. 5.
    Vongchan, P., Sajomsang, W., Kasinrerk, W., Subyen, D., & Kongtawelert, P. (2003). Anticoagulant activities of the chitosan polysulfate synthesized from marine crab shell by semi-heterogeneous conditions. Science Asia, 29, 115–120.CrossRefGoogle Scholar
  6. 6.
    Kim, S. K., Ngo, D. N., & Rajapakse, N. (2006). Therapeutic prospectives of chitin, chitosan and their derivatives. Journal of Chitin and Chitosan, 11, 1–10.Google Scholar
  7. 7.
    Jayakumar, R., Prabaharan, M., Reis, R. L., & Mano, J. F. (2005). Graft copolymerized chitosan—present status and applications. Carbohydrate Polymers, 62(2), 142–158.CrossRefGoogle Scholar
  8. 8.
    Chung, Y. C., & Chen, C. Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 99, 2806–2814.CrossRefGoogle Scholar
  9. 9.
    Limam, Z., Selmi, S., Sadok, S., & El Abed, A. (2011). Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. African Journal of Biotechnology, 10(4), 640–647.Google Scholar
  10. 10.
    Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., DeMarchi, M., & Paoletti, M. G. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 87, 995–1012.CrossRefGoogle Scholar
  11. 11.
    Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Faithonh, N., & Tanaka, M. (2008). Compositions, antioxidative and oxidative stability of Mungoong, a shrimp extract paste, from the cephalothorax of white shrimp. Journal of Food Lipids, 15(1), 97–118.CrossRefGoogle Scholar
  12. 12.
    Del Rio, D., Costa, L. G., Lean, M. E., & Crozier, A. (2010). Polyphenols and health: what compounds are involved? Nutrition, Metabolism, and Cardiovascular Diseases, 20(1), 1–6.CrossRefGoogle Scholar
  13. 13.
    Anandan, R., Chatterjee, N. S., Sivakumar, R., Mathew, S., & Asha, K. K. (2015). Dietary chitosan supplementation ameliorates isoproterenol-induced aberrations in membrane-bound ATPases and mineral status of rat myocardium. Biological Trace Element Research, 1–7.Google Scholar
  14. 14.
    Sachindra, N. M., & Bhaskar, N. (2008). In-vitro antioxidant activity of liquor from feremented shrimp biowaste. Bioresource Technology, 99, 9013–9016.CrossRefGoogle Scholar
  15. 15.
    Anandan, R., Ganesan, B., Obulesu, T., Mathew, S., Asha, K. K., Lakshmanan, P. T., & Zynudheen, A. A. (2013). Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress & Chaperones, 18(1), 121–125.CrossRefGoogle Scholar
  16. 16.
    Peng, C., Wang, Y., & Tang, Y. (1998). Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions. Journal of Applied Polymer Science, 70(3), 501–506.CrossRefGoogle Scholar
  17. 17.
    Palma Guerrero, J., Lopez-Jimenez, J. A., Perez-Bernaà, A. J., Jansson, I. C., Jansson, H. B., Salinas, J., Villalain, J., Read, N. D., & Lopez-Llorca, L. V. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032.CrossRefGoogle Scholar
  18. 18.
    Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43(1), 61–87.CrossRefGoogle Scholar
  19. 19.
    Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1), 51–63.CrossRefGoogle Scholar
  20. 20.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.Google Scholar
  21. 21.
    Tsukada, K., Matsumoto, T., Aizawa, K., Tokoro, A., Naruse, R., Suzuki, S., & Suzuki, M. (1990). Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Japanese Journal of Cancer Research, 81, 259–265.CrossRefGoogle Scholar
  22. 22.
    Huang, R., Rajapakse, N., Mendis, E., & Kim, S. K. (2006). Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sciences, 78, 2399–2408.CrossRefGoogle Scholar
  23. 23.
    AOAC (1975). Official methods of analysis (12th ed., p. 527). Washington:Association of Official Analytical Chemists.Google Scholar
  24. 24.
    Tshinyangu, K. K., & Hennebert, G. L. (1996). Protein and chitin nitrogen contents and protein content in Pleurotus ostreatus var. columbines. Food Chemistry, 57(2), 223–227.CrossRefGoogle Scholar
  25. 25.
    Rao, M. S., Munoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.CrossRefGoogle Scholar
  26. 26.
    Hajji, S., Ghorbel-Bellaaj, O., Younes, I., Jellouli, K., & Nasri, M. (2015). Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. International Journal of Biological Macromolecules, 79, 167–173.CrossRefGoogle Scholar
  27. 27.
    Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M., & Nasri, M. (2012). Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochemistry, 47(12), 2032–2039.CrossRefGoogle Scholar
  28. 28.
    Brugnerotto, J., Desbrieres, J., Roberts, G., & Rinaudo, M. (2001). Characterization of chitosan by steric exclusion chromatography. Polymer, 42(25), 9921–9927.CrossRefGoogle Scholar
  29. 29.
    Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281–285.CrossRefGoogle Scholar
  30. 30.
    Moore, G. K. and Roberts, G. A. F. (1978). Studies on the acetylation of Chitosan. Proceedings of the first International Conference on chitin/chitosan. In Muzzarelli R. A. A. and Pariser E. R., (Eds). MIT Sea Grant Program. 78, 421-425.Google Scholar
  31. 31.
    Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine—glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists’ Society, 75(2), 181–187.CrossRefGoogle Scholar
  32. 32.
    Yildirim, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083–4089.CrossRefGoogle Scholar
  33. 33.
    Koleva, I. I., Van Beek, T. A., Linssen, J. P., De Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis, 13(1), 8–17.CrossRefGoogle Scholar
  34. 34.
    Vanden Berghe, D. A., & Vlietinck, A. J. (1991). Screening methods for antibacterial and antiviral agents from higher plants. In P. M. Dey, J. B. Harborne, & K. Hostettman (Eds.), Methods in plant biochemistry. Assays for bioactivity vol. 6 (pp. 47–69). London: Academic Press.Google Scholar
  35. 35.
    Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., & Van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319.CrossRefGoogle Scholar
  36. 36.
    Al Sagheer, F. A., Al-Sughayer Muslim, M. A. S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77, 410–419.CrossRefGoogle Scholar
  37. 37.
    Hajji, S., Younes, I., Ghorbel-Bellaaj, O., Hajji, R., Rinaudo, M., Nasri, M., & Jellouli, K. (2014). Structural differences between chitin and chitosan extracted from three different marine sources. International Journal of Biological Macromolecules, 65, 298–306.CrossRefGoogle Scholar
  38. 38.
    Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer, 44, 7939–7952.CrossRefGoogle Scholar
  39. 39.
    Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydrate Polymers, 64, 98–103.CrossRefGoogle Scholar
  40. 40.
    Kurita, K., Tomita, K., Ishi, S., Nishimura, S. I., & Shimoda, K. (1993). β-chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. Journal of Polymer Science Part A: Polymer Chemistry, 31(9), 2393–2395.CrossRefGoogle Scholar
  41. 41.
    Guo, X. F., Kikuchi, K., Matahira, Y., Sakai, K., & Ogawa, K. (2002). Water-soluble chitin of low degree of deacetylation. Journal of Carbohydrate Chemistry, 21, 149–161.CrossRefGoogle Scholar
  42. 42.
    Enayat, S., & Banerjee, S. (2009). Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry, 116, 23–28.CrossRefGoogle Scholar
  43. 43.
    Meir, S., Kanner, J., Akiri, B., & Hadas, S. P. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43(7), 1813–1817.CrossRefGoogle Scholar
  44. 44.
    Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4), 840–844.CrossRefGoogle Scholar
  45. 45.
    Zhao, X. R., & Xia, W. S. (2006). Antimicrobial activities of chitosan and application in food preservation. Chinese Food Research and Development, 27(2), 157–160.Google Scholar
  46. 46.
    Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57–63.CrossRefGoogle Scholar
  47. 47.
    Tsai, G. J., & Su, W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection, 62(3), 239–243.Google Scholar
  48. 48.
    Tokura, S., Ueno, K., Miyazaki, S., & Nishi, N. (1997). Molecular weight dependent antimicrobial activity by chitosan. Macromolecular Symposia, 120, 1–9.CrossRefGoogle Scholar
  49. 49.
    Darmadji, P., & Izumimoto, M. (1994). Effect of chitosan in meat preservation. Meat Science, 38(2), 243–254.CrossRefGoogle Scholar
  50. 50.
    Cuero, R. G. (1999). Antibacterial action of exogenous chitosan. EXS, 87, 315–333.Google Scholar
  51. 51.
    Al-Hetar, M. Y., Zainal Abidin, M. A., Sariah, M., & Wong, M. Y. (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. Cubense. Journal of Applied Polymer Science, 120(4), 2434–2439.CrossRefGoogle Scholar
  52. 52.
    Guo, Z. Y., Xing, R. E., Liu, S., Zhong, Z. M., Ji, X., Wang, L., & Li, P. C. (2008). The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers, 71, 694–697.CrossRefGoogle Scholar
  53. 53.
    Chen, S. P., Wu, G. Z., & Zeng, H. Y. (2005). Preparation of high antimicrobial silver thiourea chitosan-Ag+ complex. Carbohydrate Polymers, 60, 33–38.CrossRefGoogle Scholar
  54. 54.
    Younes, Y., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. International Journal of Biological Macromolecules, 69, 489–498.CrossRefGoogle Scholar
  55. 55.
    Tokoro, A., Tatewaki, N., Suzuki, K., Mikami, T., Suzuki, S., & Suzuki, M. (1988). Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chemical & Pharmaceutical Bulletin, 36, 784–790.CrossRefGoogle Scholar
  56. 56.
    Maeda, Y., & Kimura, Y. (2004). Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. Journal of Nutrition, 134(4), 945–950.Google Scholar
  57. 57.
    Azuma, K., Osaki, T., Minami, S., & Okamoto, Y. (2015). Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials, 6(1), 33–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sawssen Hajji
    • 1
    Email author
  • Islem Younes
    • 1
  • Marguerite Rinaudo
    • 2
  • Kemel Jellouli
    • 1
  • Moncef Nasri
    • 1
  1. 1.Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Biomaterials ApplicationsGrenobleFrance

Personalised recommendations