Skip to main content
Log in

Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Waste-activated sludge (WAS) solubilized remarkably after enzymatic-enhanced anaerobic digestion, but its dewaterability was deteriorated. In this study, a novel method was performed to improve the dewaterability of enzymatic-enhanced anaerobic digestion sludge by adding CaCl2 (0.01~1.00 g/g total sludge). The capillary suction time (CST), moisture content, and filtrate turbidity were employed to characterize the dewaterability of WAS, and the possible mechanisms involved were clarified. The results showed the dewaterability did not worsen when CaCl2 was added before sludge digestion, and the CST, moisture content, and filtrate turbidity were notably reduced with the increase of CaCl2 dosage. It also shown that calcium ions played an important role in the bioflocculation of digested sludge by neutralizing negative charges on the surface of sludge. In addition, soluble protein initially lowered a little and then observably improved with the addition of CaCl2, while soluble carbohydrate was reduced sharply first and then bounced back afterwards. The interactions between calcium ions and the biopolymer further enhanced the dewatering of sludge through bridging of colloidal particles together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouskova, A., Dohanyos, M., Schmidt, J. E., & Angelidaki, I. (2005). Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Research, 39, 1481–1488.

    Article  CAS  Google Scholar 

  2. Romano, R. T., Zhang, R. H., Teter, S., & McGarvey, J. A. (2009). The effect of enzyme addition on anaerobic digestion of Jose tall wheat grass. Bioresource Technology, 100, 4564–4571.

    Article  CAS  Google Scholar 

  3. Phothilangka, P., Schoen, M. A., Huber, M., Luchetta, P., Winkler, T., & Wett, B. (2008). Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge. Water Science and Technology, 58, 1467–1473.

    Article  CAS  Google Scholar 

  4. Tanaka, S., & Kamiyama, K. (2002). Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Science and Technology, 46, 173–179.

    CAS  Google Scholar 

  5. Kang, X. R., Zhang, G. M., Chen, L., Dong, W. Y., & Tian, W. D. (2011). Effect of initial pH adjustment on hydrolysis and acidification of sludge by ultrasonic pretreatment. Industrial and Engineering Chemistry Research, 50, 12372–12378.

    Article  CAS  Google Scholar 

  6. Yang, Q., Luo, K., Li, X. M., Wang, D. B., Zheng, W., Zeng, G. M., & Liu, J. J. (2010). Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 101, 2924–2930.

    Article  CAS  Google Scholar 

  7. Luo, K., Yang, Q., Yu, J., Li, X. M., Yang, G. J., Xie, B. X., Yang, F., Zheng, W., & Zeng, G. M. (2011). Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresource Technology, 102, 7103–7110.

    Article  CAS  Google Scholar 

  8. Cheng, J., Wang, L., Ji, Y., Zhu, N., & Kong, F. (2014). The influence of factors on dewaterability of one-stage autothermal thermophilic aerobically digested sludges. World Journal of Microbiology and Biotechnology, 30, 639–647.

    Article  CAS  Google Scholar 

  9. Houghton, J. I., Quarmby, J., & Stephenson, T. (2000). The impact of digestion on sludge dewaterability. Process Safety and Environmental Protection, 78, 153–159.

    Article  CAS  Google Scholar 

  10. Shao, L., He, P., Yu, G., & He, P. (2009). Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability. Journal of Environmental Sciences (China), 21, 83–88.

    Article  CAS  Google Scholar 

  11. Dursun, D., & Dentel, S. K. (2009). Toward the conceptual and quantitative understanding of biosolids conditioning: the gel approach. Water Science and Technology, 59, 1679–1685.

    Article  CAS  Google Scholar 

  12. Tony, M. A., Zhao, Y. Q., Fu, J. F., & Tayeb, A. M. (2008). Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: effectiveness and optimizing study to improve dewaterability. Chemosphere, 72, 673–677.

    Article  CAS  Google Scholar 

  13. Wojciechowska, E. (2005). Application of microwaves for sewage sludge conditioning. Water Research, 39, 4749–4754.

    Article  CAS  Google Scholar 

  14. Feng, X., Deng, J. C., Lei, H. Y., Bai, T., Fan, Q. J., & Li, Z. X. (2009). Dewaterability of waste activated sludge with ultrasound conditioning. Bioresource Technology, 100, 1074–1081.

    Article  CAS  Google Scholar 

  15. Yuan, H. P., Zhu, N. W., & Song, F. (2011). Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis. Bioresource Technology, 102, 2308–2315.

    Article  CAS  Google Scholar 

  16. Raynaud, M., Vaxelaire, J., Olivier, J., Dieudé-Fauvel, E., & Baudez, J. C. (2012). Compression dewatering of municipal activated sludge: effects of salt and pH. Water Research, 46, 4448–4456.

    Article  CAS  Google Scholar 

  17. Sobeck, D. C., & Higgins, M. J. (2002). Examination of three theories for mechanisms of cation-induced bioflocculation. Water Research, 36, 527–538.

    Article  CAS  Google Scholar 

  18. Pevere, A., Guibaud, G., van Hullebusch, E. D., Boughzala, W., & Lens, P. N. L. (2007). Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306, 142–149.

    Article  CAS  Google Scholar 

  19. Guan, B. H., Yu, J., Fu, H. L., Guo, M. H., & Xu, X. H. (2012). Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Research, 46, 425–432.

    Article  CAS  Google Scholar 

  20. Bruus, J. H., Nielsen, P. H., & Keiding, K. (1992). On the stability of activated sludge flocs with implications to dewatering. Water Research, 26, 1597–1604.

    Article  CAS  Google Scholar 

  21. Zhou, J., Donald, S. M., Harlan, G. K., & William, D. R. (2002). Effects of temperatures and extracellular proteins on dewaterability of thermophilically digested biosolids. Journal of Environmental Engineering and Science, 1, 6.

    Article  Google Scholar 

  22. Li, X. Y., & Yang, S. F. (2007). Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research, 41, 1022–1030.

    Article  CAS  Google Scholar 

  23. Bougrier, C., Delgenes, J. P., & Carrere, H. (2008). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal, 139, 236–244.

    Article  CAS  Google Scholar 

  24. Neyens, E., Baeyens, J., Dewil, R., & De heyder, B. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106, 83–92.

    Article  CAS  Google Scholar 

  25. Yu, G. H., He, P. J., & Shao, L. M. (2010). Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis. Water Research, 44, 797–806.

    Article  CAS  Google Scholar 

  26. Novak, J. T., Agerbæk, M. L., Sørensen, B. L., & Hansen, J. A. (1999). Conditioning, filtering, and expressing waste activated sludge. Journal of Environmental Engineering, 125, 816–824.

    Article  CAS  Google Scholar 

  27. Scholz, M. (2005). Review of recent trends in capillary suction time (CST) dewaterability testing research. Industrial and Engineering Chemistry Research, 44, 8157–8163.

    Article  CAS  Google Scholar 

  28. Peng, G., Ye, F., & Li, Y. (2011). Comparative investigation of parameters for determining the dewaterability of activated sludge. Water Environment Research, 83, 667–671.

    Article  CAS  Google Scholar 

  29. Teo, K. C., Xu, H. L., & Tay, J. H. (2000). Molecular mechanism of granulation. II: proton translocating activity. Journal of Environmental Engineering, 126, 411–418.

    Article  CAS  Google Scholar 

  30. Mikkelsen, L. H., & Keidinkg, K. (2002). Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research, 36, 2451–2462.

    Article  CAS  Google Scholar 

  31. Liu, J. Y., Zhao, G. F., Duan, C., Xu, Y. F., Zhao, J., Deng, T., & Qian, G. R. (2011). Effective improvement of activated sludge dewaterability conditioning with seawater and brine. Chemical Engineering Journal, 168, 1112–1119.

    Article  CAS  Google Scholar 

  32. Mikkelsen, L. H. (2003). Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Research, 37, 2458–2466.

    Article  CAS  Google Scholar 

  33. Kara, F., Gurakan, G. C., & Sanin, F. D. (2008). Monovalent cations and their influence on activated sludge floc chemistry, structure, and physical characteristics. Biotechnology and Bioengineering, 100, 231–239.

    Article  CAS  Google Scholar 

  34. Chu, C. P., & Lee, D. J. (2001). Experimental analysis of centrifugal dewatering process of polyelectrolyte flocculated waste activated sludge. Water Research, 35, 2377–2384.

    Article  CAS  Google Scholar 

  35. Ye, F. X., Ye, Y. F., & Li, Y. (2011). Effect of C/N ratio on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge flocs. Journal of Hazardous Materials, 188, 37–43.

    Article  CAS  Google Scholar 

  36. Dey ES, Szewczyk E, Wawrzynczyk J, Norrlow O (2006) A novel approach for characterization of exopolymeric material in sewage sludge. Journal of Residuals Science and Technology 3:97-103

    CAS  Google Scholar 

  37. Yu, J., Guo, M. H., Xu, X. H., & Guan, B. H. (2014). The role of temperature and CaCl2 in activated sludge dewatering under hydrothermal treatment. Water Research, 50, 10–17.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a project supported by the National Natural Science Foundation of China (No. 51308076), the Science and Technology Project of Hunan Province (No. 2014FJ3063), and the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (No. 2012ZNDL007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Luo or Shi-ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Yang, Q., Li, Xm. et al. Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge. Appl Biochem Biotechnol 176, 2346–2357 (2015). https://doi.org/10.1007/s12010-015-1722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1722-z

Keywords

Navigation