Skip to main content
Log in

Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.0 % of the theoretical maximum at the stationary phase. This value was significantly higher than the 30.3 % measured from untreated RS. Similarly, the WSMB platform had an effect on the yield enhancement of ethanol productivity of 32.5 %. However, uniform exposure of fibril polymers appeared to have little impact on bioconversion yields. Additionally, the proteomic pools of the WSMB system were analyzed to understand either substrate-specific or nonspecific biocascades based on the change in microcomposite materials. Remarkably, regardless of modified microfibril chains, the significant pattern of 14 major proteins (|fold| > 2) was reasonably analogous in both systems, especially for lignocellulolysis-related targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., & Cherchi, F. (2012). Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 46, 25–35.

    Article  CAS  Google Scholar 

  2. Sanderson, K. (2011). Lignocellulose: a chewy problem. Nature, 474, S12–S14.

    Article  CAS  Google Scholar 

  3. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550.

    Article  CAS  Google Scholar 

  4. Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101, 1570–1580.

    Article  CAS  Google Scholar 

  5. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3, 415–431.

    Article  Google Scholar 

  6. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis. Berlin:Springer-Verlag.

    Book  Google Scholar 

  7. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 10.

    Article  Google Scholar 

  8. Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104, 471–482.

    Article  CAS  Google Scholar 

  9. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100, 1285–1290.

    Article  CAS  Google Scholar 

  10. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances, 29, 675–685.

    Article  CAS  Google Scholar 

  11. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., & Kim, K. H. (2009). Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100, 4374–4380.

    Article  CAS  Google Scholar 

  12. Potumarthi, R., Baadhe, R. R., Nayak, P., & Jetty, A. (2013). Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology, 128, 113–117.

    Article  CAS  Google Scholar 

  13. Sharma, R., Palled, V., Sharma-Shivappa, R. R., & Osborne, J. (2012). Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Applied Biochemistry and Biotechnology, 169, 761–772.

    Article  Google Scholar 

  14. Dias, A. A., Freitas, G. S., Marque, G. S. M., Sampaio, A., Fraga, I. S., Rodrigue, M. A. M., Evtuguin, D. V., & Bezerra, R. M. F. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 101, 6045–6050.

    Article  CAS  Google Scholar 

  15. Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99, 1320–1328.

    Article  CAS  Google Scholar 

  16. Kim, S., & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 96, 1994–2006.

    Article  CAS  Google Scholar 

  17. Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33, 88–96.

    Article  CAS  Google Scholar 

  18. Shrestha, P., Rasmussen, M., Khanal, S. K., Pometto 3rd, A. L., & van Leeuwen, J. H. (2008). Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. Journal of Agricultural and Food Chemistry, 56, 3918–3924.

    Article  CAS  Google Scholar 

  19. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., & Youngs, H. (2004). Toward a systems approach to understanding plant cell walls. Science, 306, 2206–2211.

    Article  CAS  Google Scholar 

  20. Nuruddin, M., Chowdhury, A., Haque, S. A., Rahman, M., Farhad, S. F., Sarwar Jahan, M., & Quaiyyum, A. (2011). Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellulose Chemistry and Technology, 45, 347–354.

    CAS  Google Scholar 

  21. Szymanski, D. B., & Cosgrove, D. J. (2009). Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Current Biology, 19, R800–R811.

    Article  CAS  Google Scholar 

  22. Zimmerman, T., Pohler, E., & Schwaller, P. (2005). Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Advanced Engineering Materials, 7, 1156–1161.

    Article  Google Scholar 

  23. Nishino, T., Matsuda, I., & Hirao, K. (2004). All-cellulose composite. Macromolecules, 37, 7683–7687.

    Article  CAS  Google Scholar 

  24. Sakurada, I., Nukushima, Y., & Ito, I. (1962). Experimental determination of the elastic modulus of crystalline regions oriented polymers. Journal of Polymer Science, 57, 651–660.

    Article  CAS  Google Scholar 

  25. Bak, J. S. (2015). Extracellular breakdown of lignocellulosic biomass by Dichomitus squalens: peroxidation-based platform and homeostatic regulation. Biotechnology Letters, 37, 349–358.

    Article  CAS  Google Scholar 

  26. Cullen, D., & Kersten, P. J. (2004). Enzymology and molecular biology of lignin degradation. In R. Brambl, & G. A. Marzluf (Eds.), The mycota III: biochemistry and molecular biology. Berlin: Springer-Verlag.

    Google Scholar 

  27. Bak, J. S. (2014). Process evaluation of electron beam irradiation-based biodegradation relevant to lignocellulose bioconversion. SpringerPlus, 3, 487.

    Article  Google Scholar 

  28. Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A., & Cosgrove, D. J. (2006). Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proceedings of the National Academy of Sciences, 103, 14664–14671.

    Article  CAS  Google Scholar 

  29. Robitaille, A. M., Christen, S., Shimobayashi, M., Cornu, M., Fava, L. L., Moes, S., Prescianotto-Baschong, C., Sauer, U., Jenoe, P., & Hall, M. N. (2013). Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science, 339, 1320–1323.

    Article  CAS  Google Scholar 

  30. Ongkeko, W. M., Altuna, X., Weisman, R. A., & Wang-Rodriguez, J. (2005). Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. American Journal of Clinical Pathology, 124, 71–76.

    Article  CAS  Google Scholar 

  31. Talapatra, S., Wagner, J. D. O., & Thompson, C. B. (2002). Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death and Differentiation, 9, 856–861.

    Article  CAS  Google Scholar 

  32. Morano, K. A. (2007). New tricks for an old dog: the evolving world of Hsp70. Annals of the New York Academy of Sciences, 1113, 1–14.

    Article  CAS  Google Scholar 

  33. Fernandez-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., Larrondo, L. F., James, T. Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T., Watanabe, T., Ryu, J. S., Kubicek, C. P., Schmoll, M., Gaskell, J., Hammel, K. E., St John, F. J., Vanden Wymelenberg, A., Sabat, G., Splinter BonDurant, S., Syed, K., Yadav, J. S., Doddapaneni, H., Subramanian, V., Lavín, J. L., Oguiza, J. A., Perez, G., Pisabarro, A. G., Ramirez, L., Santoyo, F., Master, E., Coutinho, P. M., Henrissat, B., Lombard, V., Magnuson, J. K., Kües, U., Hori, C., Igarashi, K., Samejima, M., Held, B. W., Barry, K. W., LaButti, K. M., Lapidus, A., Lindquist, E. A., Lucas, S. M., Riley, R., Salamov, A. A., Hoffmeister, D., Schwenk, D., Hadar, Y., Yarden, O., de Vries, R. P., Wiebenga, A., Stenlid, J., Eastwood, D., Grigoriev, I. V., Berka, R. M., Blanchette, R. A., Kersten, P., Martinez, A. T., Vicuna, R., & Cullen, D. (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences, 109, 5458–5463.

    Article  CAS  Google Scholar 

  34. Vanden Wymelenberg, A., Gaskell, J., Mozuch, M., Sabat, G., Ralph, J., Skyba, O., Mansfield, S. D., Blanchette, R. A., Martinez, D., Grigoriev, I., Kersten, P. J., & Cullen, D. (2010). Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 76, 3599–3610.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the by the Ministry of Education & Science Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seop Bak.

Electronic supplementary material

ESM 1

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, J.S. Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency. Appl Biochem Biotechnol 176, 2290–2302 (2015). https://doi.org/10.1007/s12010-015-1718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1718-8

Keywords

Navigation