Skip to main content
Log in

Surfactant–Amino Acid and Surfactant–Surfactant Interactions in Aqueous Medium: a Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An overview of surfactant–amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute–solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant–surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Millero, F. J., Surdo, A. L., & Shin, C. (1978). The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C. The Journal of Physical Chemistry, 82, 784–792.

    CAS  Google Scholar 

  2. Timasheff, S. N., & Fasman, G. D. (Eds.) (1969). Structure and stability of biological macromolecules (pp. 65–213). New York:Marcel Dekker.

    Google Scholar 

  3. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.

    CAS  Google Scholar 

  4. Likhodi, O., & Chalikian, T. V. (1999). Partial molar volumes and adiabatic compressibilities of a series of aliphatic amino acids and oligoglycines in D2O. Journal of the American Chemical Society, 121, 1156–1163.

    CAS  Google Scholar 

  5. Hvidt, A., & Westh, P. (1998). Different views on the stability of protein conformations and hydrophobic effects. Journal of Solution Chemistry, 27, 395–402.

    CAS  Google Scholar 

  6. Roharkar, P. G., & Aswar, A. S. (2002). Apparent molar volume and apparent molar compressibility of glycine in aqueous vanadyl sulphate solutions at 298.15, 303.15 and 308.15 K. Indian Journal of Chemistry, 41A, 312–315.

    Google Scholar 

  7. Tsurko, E. N., Neueder, R., & Kunz, W. (2007). Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K. Journal of Solution Chemistry, 36, 651–672.

    CAS  Google Scholar 

  8. Cohn, E. J., & Edsall, T. J. (Eds.) (1965). Proteins amino acids and peptides (pp. 75–115). New York:Hafner.

    Google Scholar 

  9. Zhao, C., Ma, P., & Li, J. (2005). Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and l-ascorbic acid solutions at T = 298.15 K. The Journal of Chemical Thermodynamics, 37, 37–42.

    CAS  Google Scholar 

  10. Lehninger, A. L. (2005). Principles of biochemistry 4th edn. (pp. 75–106), New York: W.H. Freeman.

  11. Lilley, T. H. (1988). In M. N. Jones (Ed.), Biochemical thermodynamics. Amsterdam: Elsevier.

    Google Scholar 

  12. Hedwig, G. R., & Hoiland, H. (1994). Thermodynamic properties of peptide solutions. Part 11. Partial molar isentropic pressure coefficients in aqueous solutions of some tripeptides that model protein side-chains. Biophysical Chemistry, 49, 175–181.

    CAS  Google Scholar 

  13. Berg, J. M., Tymoczko, J. L., Stryer, L. (2007). Biochemistry, 6th edn., New York: W. H. Freeman and Company.

  14. Chi, E. Y., Weickmann, J., Carpenter, J. F., Manning, M. C., & Randolph, T. W. (2005). Heterogeneous nucleation-controlled particulate formation of recombinant human platelet-activating factor acetylhydrolase in pharmaceutical formulation. Journal of Pharmaceutical Sciences, 94, 256–274.

    CAS  Google Scholar 

  15. Jones, L. S., Kaufmann, A., & Middaugh, C. R. (2005). Silicone oil induced aggregation of proteins. Journal of Pharmaceutical Sciences, 94, 918–927.

    CAS  Google Scholar 

  16. Liu, J. F., Yang, J., Yang, S. Z., Ye, R. Q., & Mu, B. Z. (2012). Effects of different amino acids in culture media on surfactin variants produced by bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166, 2091–2100.

    CAS  Google Scholar 

  17. Li, W., Fedosov, S., Tan, T., Xu, X., & Guo, Z. (2014). Naturally occurring alkaline amino acids function as efficient catalysts on knoevenagel condensation at physiological pH: a mechanistic elucidation. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0840-3.

    Google Scholar 

  18. Zhou, M. F., Yuan, X. Z., Zhong, H., Liu, Z. F., Li, H., Jiang, L. L., & Zeng, G. M. (2011). Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Applied Biochemistry and Biotechnology, 164, 103–114.

    CAS  Google Scholar 

  19. Srila, W., & Yamabhai, M. (2013). Identification of amino acid residues responsible for the binding to anti-FLAG™ M2 antibody using a phage display combinatorial peptide library. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-013-0326-8.

    Google Scholar 

  20. Lindman, B., Thalberg, K., Goddard, E. D., & Ananthapadmanabhan, K. P. (Eds.) (1993). Interactions of surfactants with polymers and proteins. Boca Raton FL:CRC.

    Google Scholar 

  21. Cserhati, T. (1995). Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: interaction with bioactive compounds and biological effects. Environmental Health Perspectives, 103, 358–364.

    CAS  Google Scholar 

  22. Ananthapadmanbhan, K. P. (1993). In E. D. Goddard, & K. P. Ananthapadmanbhan (Eds.), Protein–surfactant interactions, chap. 8, interactions of surfactants with polymers and proteins. London: CRC Press.

    Google Scholar 

  23. Zhao, X., Chen, J., Lu, Z., Ling, X., Deng, P., Zhu, Q., & Du, F. (2011). Analysis of the amino acids of soy globulins by AOT reverse micelles and aqueous buffer. Applied Biochemistry and Biotechnology, 165, 802–813.

    CAS  Google Scholar 

  24. Jones, M. N., & Brass, A. (1991). In E. Dickenson (Ed.), Food polymers, gels and colloids. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Jones, M. N., & Manley, P. (1980). Interaction between lysozyme and n-alkyl sulphates in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1(76), 654–664.

    Google Scholar 

  26. Fukushima, K., Murata, Y., Nishikido, N., Sugihara, G., & Tanaka, M. (1981). The binding of sodium dodecyl sulfate to lysozyme in aqueous solutions. Bulletin of the Chemical Society of Japan, 54, 3122–3127.

    CAS  Google Scholar 

  27. Fukushima, K., Murata, Y., Sugihara, G., & Tanaka, M. (1982). The binding of sodium dodecyl sulfate to lysozyme in aqueous solutions. II. The effect of added NaCl. Bulletin of the Chemical Society of Japan, 55, 1376–1378.

    CAS  Google Scholar 

  28. Volynskaya, A. V., Murasheva, S. A., Skripkin, A. Y., Shishikova, A. V., & Goldanskii, V. I. (1989). Use of tritium labeling for studying conformational-changes of proteins in solution. Molecular Biology, 23, 265–272.

    Google Scholar 

  29. Subramanian, M., Sheshadri, B. S., & Venkatappa, M. P. (1986). Interaction of proteins with detergents: binding of cationic detergents with lysozyme. Journal of Biosciences, 10, 359–371.

    CAS  Google Scholar 

  30. Nishiyama, H., & Maeda, H. (1992). Reduced lysozyme in solution and its interaction with non-ionic surfactants. Biophysical Chemistry, 44, 199–208.

    CAS  Google Scholar 

  31. Bakshi, M. S., Kaur, G., Thakur, P., Banipal, T. S., Possmayer, F., & Petersen, N. O. (2007). Surfactant selective synthesis of gold nanowires by using a DPPC-surfactant mixture as a capping agent at ambient conditions. Journal of Physical Chemistry C, 111, 5932–5940.

    CAS  Google Scholar 

  32. Bakshi, M. S., Singh, K., & Singh, J. (2006). Characterization of mixed micelles of cationic twin tail surfactants with phospholipids using fluorescence spectroscopy. Journal of Colloid and Interface Science, 297, 284–291.

    CAS  Google Scholar 

  33. Bakshi, M. S., Singh, J., & Kaur, G. (2005). Mixed micelles of monomeric and dimeric cationic surfactants with phospholipids: effect of hydrophobic interactions. Chemistry and Physics of Lipids, 138, 81–92.

    CAS  Google Scholar 

  34. Ali, A., & Ansari, N. A. (2010). Studies on the effect of amino acids/peptide on the micellization of SDS at different temperature. Journal of Surfactants and Detergents, 13, 441–449.

    CAS  Google Scholar 

  35. Wustneck, R., Wetzel, R., Buder, E., & Hermel, H. (1998). The modification of the triple helical structure of gelatin in aqueous solution I. The influence of anionic surfactants, pH-value, and temperature. Colloid and Polymer Science, 266, 1061–1067.

    Google Scholar 

  36. Chen, J., & Dickinson, E. (1995). Protein/surfactant interfacial interactions part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 100, 255–265.

    CAS  Google Scholar 

  37. Gumpen, S., Hegg, P. O., & Martens, H. (1979). Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochimica et Biophysica Acta, 574, 189–196.

    CAS  Google Scholar 

  38. Waninge, R., Paulsson, M., Nylander, T., Ninham, B., & Sellers, P. (1998). Binding of sodium dodecyl sulfate and dodecyltrimethyl ammonium chloride to β-lactoglobulin: a calorimetric study. International Dairy Journal, 8, 141–148.

    CAS  Google Scholar 

  39. Nozaki, Y., Reynolds, J. A., & Tanford, C. (1974). The interaction of a cationic detergent with bovine serum albumin and other proteins. The Journal of Biological Chemistry, 249, 4452–4459.

    CAS  Google Scholar 

  40. Moore, P. N., Puvvada, S., & Blankschtein, D. (2003). Role of the surfactant polar head structure in protein−surfactant complexation: zein protein solubilization by SDS and by SDS/C12En surfactant solutions. Langmuir, 19, 1009–1016.

    CAS  Google Scholar 

  41. Ruiz-Peña, M., Oropesa-Nuñez, R., Pons, T., Louro, S. R. W., & Pérez-Gramatges, A. (2010). Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids and Surfaces. B, Biointerfaces, 75, 282–289.

    Google Scholar 

  42. Von Hippel, P. H., & Schleich, T. (1969). Ion effects on the solution structure of biological macromolecules. Accounts of Chemical Research, 2, 257–265.

    Google Scholar 

  43. Jencks, W. P. (1969). Catalysis in chemistry and enzymology. New York:McGraw- Hill.

    Google Scholar 

  44. Khoshkbarchi, M. K., & Vera, J. H. (1996). A simplified perturbed hard-sphere model for the activity coefficients of amino acids and peptides in aqueous solutions. Industrial and Engineering Chemistry Research, 35(1996), 4319–4327.

    CAS  Google Scholar 

  45. Natarajan, M., Wadi, R. K., & Gaur, H. C. (1990). Apparent molar volumes and viscosities of some.alpha.- and.alpha.,.omega.-amino acids in aqueous ammonium chloride solutions at 298.15 K. Journal of Chemical & Engineering Data, 35, 87–93.

    CAS  Google Scholar 

  46. Yan, Z. N., Wang, J. J., & Lu, J. S. (2002). Viscosity behavior of some alpha-amino acids and their groups in water-sodium acetate mixtures. Biophysical Chemistry, 99, 199–207.

    CAS  Google Scholar 

  47. Wadi, R. K., & Ramasami, P. (1997). Partial molal volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. Journal of the Chemical Society, Faraday Transactions, 93, 243–247.

    CAS  Google Scholar 

  48. Banipal, T. S., Kaur, D., & Banipal, P. K. (2004). Apparent molar volumes and viscosities of some amino acids in aqueous sodium acetate solutions at 298.15 K. Journal of Chemical & Engineering Data, 49, 1236–1246.

    CAS  Google Scholar 

  49. Wang, X., Xu, L., Lin, R. S., & Sun, D. Z. (2004). Dilution enthalpies of glycine in aqueous potassium chloride solution. Acta Chimica Sinica, 62, 1405–1408.

    CAS  Google Scholar 

  50. Belibagli, K. B., & Ayranci, E. (1990). Viscosities and apparent molar volumes of some amino acids in water and in 6 M guanidine hydrochloride at 25 °C. Journal of Solution Chemistry, 19, 867–882.

    CAS  Google Scholar 

  51. Roy, M. N., Sinha, B., Dakua, V. K., & Sinha, A. (2006). Electrical conductances of some ammonium and tetraalkylammonium halides in aqueous binary mixtures of 1,4-dioxane at 298.15 K. Pakistan Journal of Scientific and Industrial Research, 49, 153–159.

    CAS  Google Scholar 

  52. Blanco, L. H., & Vargas, E. F. (2006). Apparent molar volumes of symmetric and asymmetric tetraalkylammonium salts in dilute aqueous solutions. Journal of Solution Chemistry, 35, 21–28.

    CAS  Google Scholar 

  53. Sułkowska, A., Bojko, B., Ro’wnicka, J., Pentak, D., & Sułkowski, W. (2003). Effect of urea on serum albumin complex with antithyroid drugs: fluorescence study. Journal of Molecular Structure, 651, 237–243.

    Google Scholar 

  54. De, S., Girigoswami, A., & Das, S. (2005). Fluorescence probing of albumin-surfactant interaction. Journal of Colloid and Interface Science, 285, 562–573.

    CAS  Google Scholar 

  55. Kelley, D., & McClements, D. J. (2003). Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids, 17, 73–85.

    CAS  Google Scholar 

  56. Vasilescu, M., Angelescu, D., Almgren, M., & Valstar, A. (1999). Interactions of globular proteins with surfactants studied with fluorescence probe methods. Langmuir, 15, 2635–2643.

    CAS  Google Scholar 

  57. .Kamat, B. P., & Seetharamappa, J. (2004). In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 35, 655–664.

    CAS  Google Scholar 

  58. Bai, H. Y., Liu, X. Q., Zhang, Z. L., & Dong, S. J. (2004). In situ circular dichroic electrochemical study of bilirubin and bovine serum albumin complex. Spectrochimica Acta A, 60, 155–160.

    Google Scholar 

  59. Farruggia, B., Nerli, B., Nuci, H. D., Rigatusso, R., & Pico, G. (1999). Thermal features of the bovine serum albumin unfolding by polyethylene glycols. International Journal of Biological Macromolecules, 26, 23–33.

    CAS  Google Scholar 

  60. Watanabe, S., & Sato, T. (1996). Effects of free fatty acids on the binding of bovine and human serum albumin with steroid hormones. Biochimica et Biophysica Acta, 1289(1996), 385–396.

    Google Scholar 

  61. Peters Jr., T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245.

    CAS  Google Scholar 

  62. He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358, 209–215.

    CAS  Google Scholar 

  63. Sulkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614, 227–232.

    CAS  Google Scholar 

  64. Miller, R., Fainerman, V. B., Makievski, A. V., Krägel, J., Grigoriev, D. O., Kazakov, V. N., & Sinyachenko, O. V. (2000). Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Advances in Colloid and Interface Science, 86, 39–82.

    CAS  Google Scholar 

  65. Griffiths, P. C., Cheung, A. Y. F., Jenkins, R. L., Howe, A. M., Pitt, A. R., Heenan, R. K., & King, S. M. (2004). Interaction between a partially fluorinated alkyl sulfate and gelatin in aqueous solution. Langmuir, 20, 1161–1167.

    CAS  Google Scholar 

  66. Sun, C. X., Yang, J. H., Wu, X., Huang, X. R., Wang, F., & Liu, S. F. (2005). Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophysical Journal, 88, 3518–3524.

    CAS  Google Scholar 

  67. Deep, S., & Ahluwalia, J. C. (2001). Interaction of bovine serum albumin with anionic surfactants. Physical Chemistry Chemical Physics, 3, 4583–4591.

    CAS  Google Scholar 

  68. Tribout, M., Paredes, S., Gonza’lez-Manãs, J. M., & Goñi, F. M. (1991). Binding of triton X-100 to bovine serum albumin as studied by surface tension measurements. Journal of Biochemical and Biophysical Methods, 22, 129–133.

    CAS  Google Scholar 

  69. Sabin, J., Prieto, G., Gonzalez-Perez, A., Ruso, J. M., & Sarmiento, F. (2006). Effects of fluorinated and hydrogenated surfactants on human serum albumin at different pHs. Biomacromolecules, 7, 176–182.

    CAS  Google Scholar 

  70. Berglund, K. D., Przybycien, T. M., & Tilton, R. D. (2003). Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 1. Role of polymer hydrophobic modification. Langmuir, 19, 2705–2713.

    CAS  Google Scholar 

  71. Few, A. V., Ottewill, R. H., & Parreira, H. C. (1995). The interaction between bovine plasma albumin and dodecyltrimethylammonium bromide. Biochimica et Biophysica Acta, 18, 136–137.

    Google Scholar 

  72. Takeda, K., Moriyama, Y., Hachiya, K. (2006). Protein interactions with ionic surfactants part I: binding and induced conformational changes”. In Encyclopedia of surface and colloid science, 2nd ed.; Somasundaran, P., & Hubbard, A. (Eds.); London: Taylor and Francis.

  73. Ding, Y., Shu, Y., Ge, L., & Guo, R. (2007). The effect of sodium dodecyl sulfate on the conformation of bovine serum albumin. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 298, 163–169.

    CAS  Google Scholar 

  74. Lad, M. D., Ledger, V. M., Briggs, B., Frazier, R. A., & Green, R. J. (2003). Analysis of the SDS−lysozyme binding isotherm. Langmuir, 19, 5098–5103.

    CAS  Google Scholar 

  75. Mackie, A. R., Gunning, A. P., Ridout, M. J., Wilde, P. J., & Morris, V. J. (2001). Orogenic displacement in mixed β-lactoglobulin/β-casein films at the air/water interface. Langmuir, 17, 6593–6598.

    CAS  Google Scholar 

  76. Miller, R., Fainerman, V. B., Leser, M. E., & Michel, M. (2004). Surface tension of mixed non-ionic surfactant/protein solutions: comparison of a simple theoretical model with experiments. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 233, 39–42.

    CAS  Google Scholar 

  77. Li, Y., Wang, X., & Wang, Y. (2006). Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants. The Journal of Physical Chemistry. B, 110, 8499–8505.

    CAS  Google Scholar 

  78. Pi, Y., Shang, Y., Peng, C., Liu, H., & Hu, Y. (2006). Interactions between bovine serum albumin and gemini surfactant alkanediyl-alpha, omega-bis(dimethyldodecyl-ammonium bromide). Biopolymers, 83, 243–249.

    CAS  Google Scholar 

  79. Wu, D., Xu, G., Feng, Y., & Li, Y. (2007). Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. International Journal of Biological Macromolecules, 40, 345–350.

    CAS  Google Scholar 

  80. Wu, D., Xu, G., Sun, Y., Zhang, H., Mao, H., & Feng, Y. (2007). Interaction between proteins and cationic gemini surfactant. Biomacromolecules, 8, 708–712.

    CAS  Google Scholar 

  81. Gull, N., Sen, P., Khan, R. H., & Kabir-ud-Din, (2009). Spectroscopic studies on the comparative interaction of cationic single-chain and gemini surfactants with human serum albumin. Journal of Biochemistry, 145, 67-77.

  82. Zana, R., & Xia, J. (Eds.) (2003). Gemini surfactants. New York:Marcel Dekker.

    Google Scholar 

  83. Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253.

    CAS  Google Scholar 

  84. Siddiqui, U. S., Ghosh, G., & Kabir-ud-Din (2006). Dynamic light scattering studies of additive effects on the microstructure of aqueous gemini micelles. Langmuir, 22(2006), 9874–9878.

    CAS  Google Scholar 

  85. Wettig, S. D., Verrall, R. E., & Foldvari, M. (2008). Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Current Gene Therapy, 8, 9–23.

    CAS  Google Scholar 

  86. Moulik, S., Dutta, P., Chattoraj, D. K., & Moulik, S. P. (1998). Biopolymer–surfactant interactions: 5: Equilibrium studies on the binding of cetyltrimethyl ammonium bromide and sodium dodecyl sulfate with bovine serum albumin, β-lactoglobulin, hemoglobin, gelatin, lysozyme and deoxyribonucleic acid. Colloids and Surfaces, B: Biointerfaces, 11, 1-8.

  87. Lu, R. C., Cao, A. N., Lai, L. H., Zhu, B. Y., Zhao, G. X., & Xiao, J. X. (2005). Interaction between bovine serum albumin and equimolarly mixed cationic-anionic surfactants decyltriethylammonium bromide-sodium decyl sulfonate. Colloids and Surfaces B: Biointerfaces, 41, 139–143.

    CAS  Google Scholar 

  88. Ali, A., Tariq, M., Patel, R., & Ittoo, F. A. (2008). Interaction of glycine with cationic, anionic, and nonionic surfactants at different temperatures: a volumetric, viscometric, refractive index, conductometric, and fluorescence probe study. Colloid and Polymer Science, 286, 183–190.

    CAS  Google Scholar 

  89. Arutyunyan, N. G., Arutyunyan, L. R., Grigoryan, V. V., & Arutyunyan, R. S. (2008). Effect of aminoacids on the critical micellization concentration of different surfactants. Colloid Journal, 70, 666–668.

    CAS  Google Scholar 

  90. Singh, S. K., Kundu, A., & Kishore, N. (2004). Interactions of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T=298.15 K: a volumetric approach. The Journal of Chemical Thermodynamics, 36, 7–16.

    CAS  Google Scholar 

  91. Ali, A., Sabir, S., Shahjahan, & Hyder, S. (2007). Volumetric and refractive index behaviour of α-amino acids in aqueous CTAB at different temperatures. Acta Physico-Chimica Sinica, 23, 1007–1012.

    CAS  Google Scholar 

  92. Jones, M. N. (1975). Biological interfaces. Amsterdam:Elsevier.

    Google Scholar 

  93. Helenius, A., & Simons, K. (1975). Solubilization of membranes by detergents. Biochimica et Biophysica Acta, 415, 29–79.

    CAS  Google Scholar 

  94. Jing, P., Kaneta, T., & Imasaka, T. (2005). On-line concentration of a protein using denaturation by sodium dodecyl sulfate. Analytical Sciences, 21, 37–42.

    CAS  Google Scholar 

  95. Zardeneta, G., & Horowitz, P. M. (1994). Protein refolding at high concentrations using detergent/phospholipid mixtures. Analytical Biochemistry, 218, 392–398.

    CAS  Google Scholar 

  96. Renthal, R., Hannapel, C., Nguyen, A. S., & Haas, P. (1990). Regeneration of bacteriorhodopsin in mixed micelles. Biochimica et Biophysica Acta, 1030, 176–181.

    CAS  Google Scholar 

  97. Tandon, S., & Horowitz, P. M. (1988). The effects of lauryl maltoside on the reactivation of several enzymes after treatment with guanidinium chloride. Biochimica et Biophysica Acta, 955, 19–25.

    CAS  Google Scholar 

  98. Aerts, T., Clauwaert, J., Haezebrouck, P., & Paeters, E. (1997). Interaction of detergents with bovine lens alpha-crystallin: evidence for an oligomeric structure based on amphiphilic interactions. European Biophysics Journal, 25, 445–454.

    CAS  Google Scholar 

  99. Dickinson, E., & Hong, S. K. (1994). Surface coverage of beta-lactoglobulin at the oil-water interface: influence of protein heat treatment and various emulsifiers. Journal of Agricultural and Food Chemistry, 42, 1602–1606.

    CAS  Google Scholar 

  100. Mao, Y., Wei, W., Zhang, J., & Zhang, S. (2002). Interaction process between ionic surfactant and protein probed by series piezoelectric quartz crystal technique. Journal of Biochemical and Biophysical Methods, 52, 19–29.

    CAS  Google Scholar 

  101. Singh, S. K., & Kishore, N. (2004). Volumetric properties of amino acids and hen-egg white lysozyme in aqueous triton X-100 at 298.15 K. Journal of Solution Chemistry, 33, 1411–1427.

    CAS  Google Scholar 

  102. Fargacs, E. (1993). Interaction of amino acids with the nonionic surfactant nonylphenyl hexaethoxylate. Biochemistry and Molecular Biology International, 30, 1–11.

    Google Scholar 

  103. Paz-Andrade, M. I., Jones, M. N., & Skinner, H. A. (1978). Enthalpy of interaction between some cationic polypeptides and n-alkyl sulphates in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1(74), 2923–2929.

    Google Scholar 

  104. Bertolotti, S. G., Bohorquez, M., Cosa, J. J., Garcia, N. A., & Previtali, C. M. (1987). Micellar effect on the fluorescence quenching of indolic compounds by amino acids. Photochemistry and Photobiology, 46, 331–335.

    CAS  Google Scholar 

  105. Cardoso, M. M., Barradas, M. J., Kroner, K. H., & Crespo, J. G. (1999). Amino acid solubilization in cationic reversed micelles: factors affecting amino acid and water transfer. Journal of Chemical Technology and Biotechnology, 74, 801–811.

    CAS  Google Scholar 

  106. Sjoegren, H., Ericsson, C. A., Evenaes, J., & Ulvenlund, S. (2005). Interactions between charged polypeptides and nonionic surfactants. Biophysical Journal, 89, 4219–4233.

    CAS  Google Scholar 

  107. Singh, M. (2005). Studies of molecular interactions of α-amino acids in aqueous and cationic surfactant systems investigated from their densities and apparent molal volumes at 283.15, 288.15 and 293.15 K. Pakistan Journal of Scientific and Industrial Research, 48, 303–311.

    CAS  Google Scholar 

  108. Roy, S., & Dey, J. (2007). Effect of hydrogen-bonding interactions on the self-assembly formation of sodium N-(11-acrylamidoundecanoyl)-L-serinate, L-asparaginate, and L-glutaminate in aqueous solution. Journal of Colloid and Interface Science, 307, 229–234.

    CAS  Google Scholar 

  109. Ali, A., Khan, S., Hyder, S., & Tariq, M. (2007). Interactions of some α-amino acids with tetra–n–alkylammonium bromides at different temperatures. The Journal of Chemical Thermodynamics, 39, 613–620.

    CAS  Google Scholar 

  110. Qiu, X., Fang, W., Lei, Q., & Lin, R. (2008). Enthalpies of transfer of amino acids from water to aqueous cationic surfactants solutions at 298.15 K. Journal of Chemical & Engineering Data, 53, 942–945.

    CAS  Google Scholar 

  111. Jadhav, V., Maiti, S., Dasgupta, A., Das, P. K., Dias, R. S., Miguel, M. G., & Lindman, B. (2008). Effect of the head-group geometry of amino acid-based cationic surfactants on interaction with plasmid DNA. Biomacromolecules, 9, 1852–1859.

    CAS  Google Scholar 

  112. Qiu, X., Lei, Q., Fang, W., & Lin, R. (2008). A calorimetric study on interactions of amino acids with sodium dodecylsulfate and dodecyltrimethylammonium bromide in aqueous solutions at 298.15 K. Thermochimica Acta, 478, 54–56.

    CAS  Google Scholar 

  113. Kandpal, N. D., Joshi, S. K., Singh, R., & Pandey, K. (2010). Thermodynamic parameters of micellization and transfer of amino acids from water to aqueous linear alkyl benzene sulphonate. Journal of the Indian Chemical Society, 87, 487–493.

    CAS  Google Scholar 

  114. Nandni, D., Vohra, K. K., Mahajan, R. K., & Kumar, R. (2012). Phase separation of triblock polymers and tritons in the presence of biomolecules. Journal of Solution Chemistry, 41, 702–714.

    CAS  Google Scholar 

  115. Misra, P. P., & Kishore, N. (2012). Volumetric and calorimetric investigations of molecular interactions in some amino acids and peptides in the combined presence of surfactants and glycine betaine. The Journal of Chemical Thermodynamics, 54, 453–463.

    CAS  Google Scholar 

  116. Liu, Y., Wu, Z., Zhang, Y., & Yuan, H. (2012). Partitioning of biomolecules in aqueous two-phase systems of polyethylene glycol and nonionic surfactant. Biochemical Engineering Journal, 69, 93–99.

    CAS  Google Scholar 

  117. Ali, A., Tasneem, S., Bidhuri, P., Bhushan, V., & Malik, N. A. (2012). Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures. Russian Journal of Physical Chemistry A, 86, 1923–1929.

    CAS  Google Scholar 

  118. Chauhan, S., Sharma, K., Kumar, K., & Kumar, G. (2014). A comparative study of micellization behavior of an ethoxylated alkylphenol in aqueous solutions of glycine and leucine. Journal of Surfactants and Detergents, 17, 161–168.

    CAS  Google Scholar 

  119. Sharma, K., & Chauhan, S. (2014). Apparent molar volume, compressibility and viscometric studies of sodium dodecyl benzene sulfonate (SDBS) and dodecyltrimethylammonium bromide (DTAB) in aqueous amino acid solutions: a thermo-acoustic approach. Thermochimica Acta, 578, 15–27.

    CAS  Google Scholar 

  120. Harutyunyana, N. G., Harutyunyana, L. R., & Harutyunyan, R. S. (2010). Volumetric properties of amino acids in aqueous solution of nonionic surfactant. Thermochimica Acta, 498, 124–127.

    Google Scholar 

  121. Talele, P., & Kishore, N. (2014). Thermodynamics of the interactions of some amino acids and peptides with dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide. The Journal of Chemical Thermodynamics, 70, 182–189.

    CAS  Google Scholar 

  122. Ali, A., Shahjahan, Malik, N. A., Uzair, S., & Bhushan, V. (2015). Physico-chemical studies of glycine, l-alanine, l-phenylalanine and glycylglycine in aqueous Triton X-100 at different temperatures. Tenside, Surfactants, Detergents, 52, 1–8.

    Google Scholar 

  123. Chauhan, S., & Sharma, K. (2014). Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. The Journal of Chemical Thermodynamics, 71, 205–211.

    CAS  Google Scholar 

  124. Alam, M. S., Siddiq, A. M., Mythili, V., Priyadharshini, M., Kamely, N., & Mandal, A. B. (2014). Effect of organic additives and temperature on the micellization of cationic surfactant cetyltrimethylammonium chloride: evaluation of thermodynamics. Journal of Molecular Liquids, 199, 511–517.

    CAS  Google Scholar 

  125. Ali, A., Bhushan, V., & Bidhuri, P. (2013). Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures. Journal of Molecular Liquids, 177, 209–214.

    CAS  Google Scholar 

  126. Wen, W. Y., & Saito, S. (1964). Apparent and partial molal volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. The Journal of Physical Chemistry, 68, 2639–2644.

    CAS  Google Scholar 

  127. Chauhan, S., Rana, D. S., Akash, Rana, K., Chauhan, M. S., & Umar, A. (2012). Temperature-dependant volumetric and compressibility studies of drug-surfactant interactions in dimethylsulfoxide (DMSO) solutions. Advanced Science Letters, 5, 1–4.

    Google Scholar 

  128. Ali, A., Malik, N. A., Uzair, S., Ali, M., & Ahmad, M. F. (2014). Hexadecyltrimethylammonium bromide micellization in glycine, diglycine, and triglycine aqueous solutions as a function of surfactant concentration and temperatures. Russian Journal of Physical Chemistry A, 88, 1053–1061.

    CAS  Google Scholar 

  129. Ali, A., Malik, N. A., Uzair, S., & Ali, M. (2014). Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids. Molecular Physics, 112, 2681–2693.

    CAS  Google Scholar 

  130. Ali, A., Bhushan, V., Malik, N. A., & Behera, K. (2013). Study of mixed micellar aqueous solutions of sodium dodecyl sulfate and amino acids. Colloid Journal, 75, 357–365.

    CAS  Google Scholar 

  131. Stellner, K. L., Amante, J. C., Scamehorn, J. F., & Harwell, J. H. (1987). Precipitation phenomena in mixtures of anionic and cationic surfactants in aqueous solutions. Journal of Colloid and Interface Science, 123, 186.

  132. Holland, P. M., & Rubingh, D. M. (1992). Mixed surfactant systems: an overview In: P.M. Holland, D. N. Rubingh, (Eds.), Mixed surfactant systems, ACS Symposium Series No. 501, (pp. 2). Washington.

  133. Attwood, D., & Florence, A. T. (1983). Surfactant systems, their chemistry, pharmacy and biology. New York:Chapman & Hall.

    Google Scholar 

  134. USSR Patent 1,028,605 (1983). Chem. Abstr. 100, 12144w.

  135. Schwuger, M. J. (1971). Properties of sub-stoichiometric mixtures of anionic and cationic surfactants in water. Kolloid Zeitschrift & Zeitschrift fur Polymere, 243, 129–135.

    CAS  Google Scholar 

  136. Scamehorn, J. F. (Ed.) (1986). An overview of phenomena involving surfactant mixtures. In: Phenomena in mixed surfactant systems (pp. 20). ACS Symposium Series.

  137. Moulik, S. P., Haque, M. E., Jana, P. K., & Das, R. (1996). Micellar properties of cationic surfactants in pure and mixed states. The Journal of Physical Chemistry, 100, 701–708.

    CAS  Google Scholar 

  138. Sharma, K. S., Patil, S. R., & Rakshit, A. K. (2004). Self-aggregation of a cationic−nonionic surfactant mixture in aqueous media: tensiometric, conductometric, density, light scattering, potentiometric, and fluorometric studies. The Journal of Physical Chemistry. B, 108, 12804–12812.

    CAS  Google Scholar 

  139. Jana, P. K., & Moulik, S. P. (1991). Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. The Journal of Physical Chemistry, 95, 9525–9532.

    CAS  Google Scholar 

  140. Haque, M. E., Das, A. R., Rakshit, A. K., & Moulik, S. P. (1996). Properties of mixed micelles of binary surfactant combinations. Langmuir, 12, 4084–4089.

    CAS  Google Scholar 

  141. Sulthana, S. B., Rao, P. V. C., Bhat, S. G. T., Nakano, T. Y., Sugihara, G., & Rakshit, A. K. (2000). Solution properties of nonionic surfactants and their mixtures: polyoxyethylene (10) alkyl ether [CnE10] and MEGA-10. Langmuir, 16, 980–987.

    CAS  Google Scholar 

  142. Castaldi, M., Costantino, L., Ortona, O., Paduano, L., & Vitagliano, V. (1998). Mutual diffusion measurements in a ternary system: ionic surfactant−nonionic surfactant−water at 25 °C. Langmuir, 14, 5994–5998.

    CAS  Google Scholar 

  143. Sulthana, S. B., Rao, P. V. C., Bhat, S. G. T., & Rakshit, A. K. (1998). Interfacial and thermodynamic properties of SDBS−C12E10 mixed micelles in aqueous media: effect of additives. The Journal of Physical Chemistry. B, 102, 9653–9660.

    CAS  Google Scholar 

  144. Bury, R., Treiner, C., Chevalet, J., & Makayssi, A. (1991). Peculiar solubilization thermodynamics of pentan-1-ol in mixed surfactant solutions of benzyldimethyltetradecylammonium chloride and trimethyltetradecylammonium chloride: a calorimetric investigation. Analytica Chimica Acta, 251, 69–77.

    CAS  Google Scholar 

  145. Makayssi, A., Bury, R., & Treiner, C. (1994). Thermodynamics of micellar solubilization for 1-pentanol in weakly interacting binary cationic surfactant mixtures of 25 .degree.C. Langmuir, 10, 1359–1365.

    CAS  Google Scholar 

  146. Jacobson, A. M., & Crars, F. (1991). Multicomponent solubilization in aqueous micelles of dodecyl- and tetradecyltrimethylammonium bromide: solubilization equilibria. Journal of Colloid and Interface Science, 142, 480–488.

    CAS  Google Scholar 

  147. Kaler, E. W., Murthy, A. K., Rodriguez, B. E., & Zasadzinski, J. A. (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245, 1371–1374.

    CAS  Google Scholar 

  148. Shioi, A., & Hatton, T. A. (2002). Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir, 18, 7341–7348.

    CAS  Google Scholar 

  149. Efrat, R., Abramov, Z., Aserin, A., & Garti, N. (2010). Nonionic−anionic mixed surfactants cubic mesophases. Part I: structural chaotropic and kosmotropic effect. The Journal of Physical Chemistry. B, 114, 10709–10716.

    CAS  Google Scholar 

  150. Cui, X., Jiang, Y., Yang, C., Lu, X., Chen, H., Mao, S., Liu, M., Yuan, H., Luo, P., & Du, Y. (2010). Mechanism of the mixed surfactant micelle formation. The Journal of Physical Chemistry. B, 114, 7808–7816.

    CAS  Google Scholar 

  151. Kabir-ud-Din, Rub, M. A., & Naqvi, A. Z. (2010). Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15-308.15 K. The Journal of Physical Chemistry. B, 114, 6354–6364.

    CAS  Google Scholar 

  152. Rodriquez, A., Graciani, M., Moreno-Vargas, A. J., & Moya, M. L. (2008). Mixtures of monomeric and dimeric surfactants: hydrophobic chain length and spacer group length effects on non ideality. The Journal of Physical Chemistry. B, 112, 11942.

    Google Scholar 

  153. Singh, J., Unlu, Z., & Ranganathan, R. (2008). Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. The Journal of Physical Chemistry. B, 112, 3997–4008.

    CAS  Google Scholar 

  154. Prado, M. C., & Neves, B. R. A. (2010). Mixed self-assembled layers of phosphonic acids. Langmuir, 26, 648–654.

    CAS  Google Scholar 

  155. Tucker, I., Penfold, J., Thomas, R. K., Grillo, I., Mildner, D. F., & Barker, J. G. (2008). Self-assembly in complex mixed surfactant solutions: the impact of dodecyl triethylene glycol on dihexadecyl dimethyl ammonium bromide. Langmuir, 24, 10089–10098.

    CAS  Google Scholar 

  156. Katarzyna, S., & Bronislaw, J. (2009). Thermodynamics of micellization of aqueous solutions of binary mixtures of two anionic surfactants. Langmuir, 25, 4377–4383.

    Google Scholar 

  157. Denkova, P. S., Lokeren, L. V., & Willem, R. (2009). Mixed micelles of triton X-100, sodium dodecyl dioxyethylene sulfate, and synperonic l61 investigated by NOESY and diffusion ordered NMR spectroscopy. The Journal of Physical Chemistry. B, 113, 6703–6709.

    CAS  Google Scholar 

  158. Tsamaloukas, A. D., Beck, A., & Heerklotz, H. (2009). Modeling the micellization behavior of mixed and pure n-alkyl-maltosides. Langmuir, 25, 4393–4401.

    CAS  Google Scholar 

  159. Khatua, D., Ghosh, S., Dey, J., Ghosh, G., & Aswal, V. K. (2008). Physicochemical properties and microstructure formation of the surfactant mixtures of sodium N-(2-(n-dodecylamino)ethanoyl)-L-alaninate and SDS in aqueous solutions. The Journal of Physical Chemistry. B, 112, 5374–5380.

    CAS  Google Scholar 

  160. Rodriguez-Pulido, A., Casado, A., Munoz-Ubeda, M., Junquera, E., & Aicart, E. (2010). Experimental and theoretical approach to the sodium decanoate-dodecanoate mixed surfactant system in aqueous solution. Langmuir, 26(2010), 9378–9385.

    CAS  Google Scholar 

  161. Poorgholami-Bejarpasi, N., Hashemianzadeh, M., Mousavi-khoshdel, S. M., & Sohrabi, B. (2010). Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation. Langmuir, 26, 13786–13796.

    CAS  Google Scholar 

  162. Rosen, M. J. (2004). Surfactants and interfacial phenomena, 3rd edn. Hoboken: Wiley-Interscience.

  163. Tadros, T. F. (2005). Applied surfactants principles and applications. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  164. Rosen, M. J., & Zhao, F. (1983). Binary mixtures of surfactants. The effect of structural and microenvironmental factors on molecular interaction at the aqueous solution/air interface. Journal of Colloid and Interface Science, 95, 443–452.

    CAS  Google Scholar 

  165. Gu, B., & Rosen, M. J. (1989). Surface concentrations and molecule interactions in cationic-anionic mixed monolayers at various interfaces. Journal of Colloid and Interface Science, 129, 537–553.

    CAS  Google Scholar 

  166. Rosen, M. J. (1991). Synergism in mixtures containing zwitterionic surfactants. Langmuir, 7, 885–888.

    CAS  Google Scholar 

  167. Liu, L., & Rosen, M. J. (1996). The interaction of some novel diquaternary gemini surfactants with anionic surfactants. Journal of Colloid and Interface Science, 179, 454–459.

    CAS  Google Scholar 

  168. Rosen, M. J., & Hua, H. Y. (1982). Surface concentrations and molecular interactions in binary mixtures of surfactants. Journal of Colloid and Interface Science, 86, 164–172.

    CAS  Google Scholar 

  169. Rubingh, D. N. (1979). Solution chemistry of surfactants, Mittal, K. L., (Ed.). (pp. 337-354) New York: Plenum.

  170. Kwan, C., & Rosen, M. J. (1980). Relationship of structure to properties in surfactants. 9. Syntheses and properties of 1,2- and 1,3-alkanediols. The Journal of Physical Chemistry, 84, 547–551.

    CAS  Google Scholar 

  171. Rosen, M. J. (1981). Purification of surfactants for studies of their fundamental surface properties. Journal of Colloid and Interface Science, 79, 587–588.

    CAS  Google Scholar 

  172. Reid, V. W., Longman, G. F., & Heinerth, E. (1967). Determination of anionic-active detergents by two phase titration. Tenside, 4, 292–304.

    CAS  Google Scholar 

  173. Kaler, E. W., Herington, K. L., Murthy, A. K., & Zasadzinski, J. A. N. (1992). Phase behavior and structures of mixtures of anionic and cationic surfactants. The Journal of Physical Chemistry, 96, 6698–6707.

    CAS  Google Scholar 

  174. Rosen, M. J., & Zhu, B. Y. (1984). Synergism in binary mixtures of surfactants: III. Betaine-containing systems. Journal of Colloid and Interface Science, 99, 427–434.

    CAS  Google Scholar 

  175. Sharma, K. S., Rodgers, C., Palepu, R. M., & Rakshit, A. K. (2003). Studies of mixed surfactant solutions of cationic dimeric (gemini) surfactant with nonionic surfactant C12E6 in aqueous medium. Journal of Colloid and Interface Science, 268, 482–488.

    CAS  Google Scholar 

  176. Kabir-ud-Din, Sheikh, M. S., & Dar, A. A. (2009). Interaction of a cationic gemini surfactant with conventional surfactants in the mixed micelle and monolayer formation in aqueous medium. Journal of Colloid and Interface Science, 333, 605–612.

    CAS  Google Scholar 

  177. Negm, N. A., & El Sabagh, A. M. (2011). Interaction between cationic and conventional nonionic surfactants in the mixed micelle and monolayer formed in aqueous medium. Quimica Nova, 34, 1007–1013.

    CAS  Google Scholar 

  178. Azum, N., Asiri, A. M., Rub, M. A., Khan, A. S. P., Khan, A., Rahman, M. M., Kumar, D., & Al-Youbi, A. O. (2013). Mixed micellization of gemini surfactant with nonionic surfactant in aqueous media: a fluorometric study. Colloid Journal, 75, 235–240.

    CAS  Google Scholar 

  179. Fatma, N., Ansari, W. H., Panda, M., & Kabir-ud-Din (2013). Mixed micellization behavior of gemini (cationic ester-bonded) surfactants with conventional (cationic, anionic and nonionic) surfactants in aqueous medium. Zeitschrift für Physikalische Chemie, 27, 133–149.

    Google Scholar 

  180. Akbas, H., Boz, M., & Elemenli, A. (2014). Interaction between cationic gemini surfactant and related single-chain surfactant in aqueous solutions. Fluid Phase Equilibria, 370, 95–100.

    CAS  Google Scholar 

  181. Al-Hadabi, B. A., & Aoudia, M. (2014). Surfactant–surfactant and surfactant–solute interactions in SLES–Brij35 mixed micelles: effect of the degree of ethoxylation on pyrene solubilization enhancement in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 82–89.

    CAS  Google Scholar 

  182. Svanedal, I., Persson, G., Norgren, M., & Edlund, H. (2014). Interactions in mixed micellar systems of an amphoteric chelating surfactant and ionic surfactants. Langmuir, 30, 1250–1256.S.

    CAS  Google Scholar 

  183. Jha, K. C., Liu, H., Bockstaller, M. R., & Heinz, H. (2013). Facet recognition and molecular ordering of ionic liquids on metal surfaces. Journal of Physical Chemistry C, 117, 25969–25981.

    CAS  Google Scholar 

  184. Heinz, H., & Suter, U. W. (2004). Surface structure of organoclays. Angewandte Chemie, International Edition, 43, 2239–2243.

    CAS  Google Scholar 

  185. Heinz, H. J. (2010). Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces. Computers & Chemistry, 31, 1564–1568.

    CAS  Google Scholar 

  186. Kumari, M., Maurya, J. K., Singh, U. K., Khan, A. B., Ali, M., Singh, P., & Patel, R. (2014). Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 124, 349.

    CAS  Google Scholar 

  187. Vishvakarma, V. K., Kumari, K., Patel, R., Dixit, V. S., Singh, P., Mehrotra, G. K., Chandra, R., & Chakrawarty, A. K. (2015). Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 143, 319–323.

    CAS  Google Scholar 

  188. Gharibi, H., Khodadadi, Z., Mousavi-Khoshdel, S. M., Hashemianzadeh, S. M., & Javadian, S. (2014). Mixed micellization of gemini and conventional surfactant in aqueous solution: A lattice Monte Carlo simulation. Journal of Molecular Graphics & Modelling, 53, 221-227.

  189. Wanga, L., Hu, Y., Sun, W., & Sun, Y. (2015). Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Applied Surface Science, 327, 364–370.

    Google Scholar 

  190. Jusufi, A., LeBard, D. N., Levine, B. G., & Klein, M. L. (2012). Surfactant concentration effects on micellar properties. The Journal of Physical Chemistry. B, 116, 987–991.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisar Ahmad Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N.A. Surfactant–Amino Acid and Surfactant–Surfactant Interactions in Aqueous Medium: a Review. Appl Biochem Biotechnol 176, 2077–2106 (2015). https://doi.org/10.1007/s12010-015-1712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1712-1

Keywords

Navigation