Skip to main content

Advertisement

Log in

Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosynthesized silver nanoparticles (AgNPs) incorporated polycaprolactone (PCL) nanomembrane was prepared by electrospinning as a cost-effective nanocomposite for application as an antimicrobial agent against wound infection. The nanocomposite membrane was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis and Scanning Electron microscopy (SEM). The hydrophilicity analysis of electrospun membranes as evaluated by water contact angle measurement showed the change of hydrophobicity of PCL to hydrophilic upon incorporation of silver nanoparticles. Better mechanical properties were also observed for PCL membrane due to the incorporation of silver nanoparticles and are highly supportive to explore its biomedical applications. Further antibacterial analysis of silver nanoparticle-incorporated PCL membrane against common wound pathogens coagulase-negative Staphylococcus epidermidis and Staphylococcus haemolyticus showed remarkable activity. As biosynthesized AgNPs are least explored for clinical applications, the current study is a promising cost-effective method to explore the development of silver nanoparticle-based electrospun nanocomposite to resist wound-associated infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Subbiah, T., Bhat G. S., Tock R. W., Parameswaran S. & Ramkumar S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96,557–569.

    Article  CAS  Google Scholar 

  2. Deitzel, J. M., Kleinmeyer J. D., Hirvonen J. K. & Beck Tan N. C. (2001). Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42,8163–8170.

  3. Gibson, P. W., Schreuder-Gibson H. L. & Rivin D. (1999). Electrospun fiber mats: transport properties. AICHE Journal, 45,190–195.

  4. Li, W.-J., Laurencin C. T., Caterson E. J., Tuan R. S. & Ko F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60,613–621.

  5. Wutticharoenmongkol, P., Sanchavanakit N., Pavasant P. & Supaphol P. (2006). Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromolecular Bioscience, 6,70–77.

    Article  CAS  Google Scholar 

  6. Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082.

    Article  CAS  Google Scholar 

  7. Chen, G., Zhou, P., Mei, N., Chen, X., & Shao, Z. (2004). Silk fibroin modified porous poly (ε-caprolactone) scaffold for human fibroblast culture in vitro. Journal of Materials Science. Materials in Medicine, 15, 671–677.

    Article  CAS  Google Scholar 

  8. Chong, E., Phan T., Lim I., Zhang Y., Bay B., Ramakrishna S. & Lim C. (2007). Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 3,321–330.

    Article  CAS  Google Scholar 

  9. Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., & Tuan, R. S. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26, 599–609.

    Article  CAS  Google Scholar 

  10. Calandrelli, L., Calarco, A., Laurienzo, P., Malinconico, M., Petillo, O., & Peluso, G. (2008). Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver. Biomacromolecules, 9, 1527–1534.

    Article  CAS  Google Scholar 

  11. Zhao, W., Ju, Y. M., Christ, G., Atala, A., Yoo, J. J., & Lee, S. J. (2013). Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold. Biomaterials, 34, 8235–8240.

    Article  CAS  Google Scholar 

  12. Aslan, S., Loebick, C. Z., Kang, S., Elimelech, M., Pfefferle, L. D., & Van Tassel, P. R. (2010). Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale, 2, 1789–1794.

    Article  CAS  Google Scholar 

  13. Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21, 347.

    Article  Google Scholar 

  14. Thomas, R., Nair, A. P., Kr, S., Mathew, J., & Ek, R. (2014). Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Applied Biochemistry and Biotechnology, 173, 449–460.

    Article  CAS  Google Scholar 

  15. Bowler, P., Duerden, B. I., & Armstrong, D. G. (2001). Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269.

  16. Chapman, R. L. & Faix R. G. (2003). Persistent bacteremia and outcome in late onset infection among infants in a neonatal intensive care unit. The Pediatric Infectious Disease Journal, 22,17–21.

  17. Martin, M. A. (1989). Coagulase-negative staphylococcal bacteremia. Annals of Internal Medicine, 110, 9.

    Article  CAS  Google Scholar 

  18. Mahmoudi, M. & Serpooshan V. (2012). Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano, 6,2656–2664.

    Article  CAS  Google Scholar 

  19. Silver, S., Phung L. T. & Silver G. (2006). Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology & Biotechnology, 33,627–634.

  20. Silver, S. & Phung L. T. (1996). Bacterial heavy metal resistance: new surprises. Annual Review of Microbiology, 50,753–789.

  21. Slawson, R. M., Van Dyke, M. I., Lee, H., & Trevors, J. T. (1992). Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 27, 72–79.

  22. Monteiro, D. R., Gorup L. F., Takamiya A. S., Ruvollo-Filho A. C., Camargo E. R. D. & Barbosa D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34,103–110.

  23. Thomas, R., Soumya, K.R., Jyothis, M. & Radhakrishnan E.K. (2014). Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonisation efficiency of Coagulase Negative Staphylococci. Journal of Photochemistry Photobiology B: Biology, (Accepted).

  24. Augustine, R., Dominic E. A., Reju I., Kaimal B., Kalarikkal N. & Thomas S. (2014). Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances, 4,24777.

  25. Thomas, R., Janardhanan, A., Varghese, R. T., Sonia, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian Journal of Microbiology, 45, 1221-1227.

  26. Das, V. L., Thomas R., Varghese R. T., Soniya E. V., Mathew J. & Radhakrishnan E. K. (2013). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. Biotech 3,4, 121–126.

  27. Janardhanan, A., Roshmi, T., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2013). Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin. Materials Science-Poland, 31, 173–179.

    Article  CAS  Google Scholar 

  28. Iram, F., Iqbal, M. S., Athar, M. M., Saeed, M. Z., Yasmeen, A., & Ahmad, R. (2014). Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydrate Polymers, 104, 29–33.

  29. Li, Z. H., Su, G. Y., Wang, X. Y., & Gao, D. (2005). Micro Porous P (VDF- HFP) - based polymer electrolyte filled with Al 2 O3 nanoparticles. Solid State Ionics, 176, 1903–1908.

  30. Lim, C. T., Tan, E. P. S., & Ng, S. Y. (2008). Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters, 92, 141908.

  31. Ma, Z., Mao, Z., & Gao, C. (2007). Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 60, 137–157.

  32. Tran, P. A., Hocking, D. M., & O’connor, A. J. (2015). In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Materials Science and Engineering: C, 47, 63–69.

  33. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

  34. Furno, F. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54, 1019–1024.

  35. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., & Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61, 869–876.

  36. Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 16, 933–946.

  37. Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., Zhao, D., & Lu, L. (2013). Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: a preclinical study. International Journal of Nanomedicine, 8, 4131–4145.

  38. Liang, D., Hsiao, B. S., & Chu, B. (2007). Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews, 59, 1392–1412.

Download references

Acknowledgments

The authors gratefully acknowledge the Indian Council of Medical Research (ICMR), India, for the funded project on CoNS and Senior Research Fellowship to the author Roshmi Thomas. We also thank the Department of Biotechnology, Government of India, for DBT RGYI and DBT – MSUB – IPLSARE Programmes in School of Biosciences, Mahatma Gandhi University. In addition, we thank the Director, Centre for Nanoscience and Nanotechnology, for the help and support for electrospinning unit, contact angle measurement, and tensile testing and the Director, School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India, for SEM analysis of samples. We also thank the Director, School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, India, for the help in XRD analysis.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, R., Soumya, K.R., Mathew, J. et al. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material. Appl Biochem Biotechnol 176, 2213–2224 (2015). https://doi.org/10.1007/s12010-015-1709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1709-9

Keywords

Navigation