Skip to main content
Log in

Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The patchoulol synthase (PTS) is a multi-product sesquiterpene synthases which is the central enzyme for biosynthesis of patchouli essential oil in the patchouli plant. Sesquiterpene synthases catalyse the formation of various complex carbon backbones difficult to approach by organic synthesis. Here, we report the characterisation of a recombinant patchoulol synthase complementary DNA (cDNA) variant (PTS var. 1), exhibiting significant amino acid exchanges compared to the native PTS. The product spectrum using the natural substrate E,E-farnesyl diphosphate (FDP) as well as terpenoid products resulting from conversions employing alternative substrates was analysed by GC-MS. In respect to a potential use as a biocatalyst, important enzymatic parameters such as the optimal reaction conditions, kinetic behaviour and the product selectivity were studied as well. Adjusting the reaction conditions, an increased patchoulol ratio in the recombinant essential oil was achieved. Nevertheless, the ratio remained lower than in plant-derived patchouli oil. As alternative substrates, several prenyl diposphates were accepted and converted in numerous compounds by the PTS var. 1, revealing its great biocatalytic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Buchi, G., MacLeod, W. D., & Padilla, J. (1964). Terpenes. XIX synthesis of patchouli alcohol. Journal of the American Chemical Society, 86, 4438–4444.

    Article  Google Scholar 

  2. Deguerry, F., Pastore, L., Wu, S., Clark, A., Chappell, J., & Schalk, M. (2006). The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Archives of Biochemistry and Biophysics, 454, 123–136.

    Article  CAS  Google Scholar 

  3. Jones, C. G., Keeling, C. I., Ghisalberti, E. L., Barbour, E. L., Plummer, J. A., & Bohlmann, J. (2008). Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Archives of Biochemistry and Biophysics, 477, 121–130.

    Article  CAS  Google Scholar 

  4. Degenhardt, J., Köllner, T. G., & Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70, 1621–1637.

    Article  CAS  Google Scholar 

  5. Naef, F., Decorzant, R., Giersch, W., & Ohloff, G. (1981). A stereocontrolled access to (±)-, (−)-, and (+)-patchouli alcohol. Helvetica Chimica Acta, 64, 1387–1397.

    Article  CAS  Google Scholar 

  6. Srikrishna, A., & Satyanarayana, G. (2005). An enantiospecific total synthesis of (−)-patchouli alcohol. Tetrahedron: Asymmetry, 16, 3992–3997.

    Article  CAS  Google Scholar 

  7. Corey, E. J., Mitra, R. B., & Uda, H. (1964). Total synthesis of d,l -caryophyllene and d,l -isocaryophyllene. Journal of the American Chemical Society, 86, 485–492.

    Article  CAS  Google Scholar 

  8. Cane, D. E. (1990). Enzymic formation of sesquiterpenes. Chemical Reviews, 90, 1089–1103.

    Article  CAS  Google Scholar 

  9. Miller, D. J., & Allemann, R. K. (2012). Sesquiterpene synthases: passive catalysts or active players? Natural Product Reports, 29, 60–71.

    Article  CAS  Google Scholar 

  10. Hartwig, S., Frister, T., Alemdar, S., Li, Z., Krings, U., Berger, R. G., Scheper, T., & Beutel, S. (2014). Expression, purification and activity assay of a patchoulol synthase cDNA variant fused to thioredoxin in Escherichia coli. Protein Expression and Purification, 97, 61–71.

    Article  CAS  Google Scholar 

  11. Faraldos, J. A., Wu, S., Chappell, J., & Coates, R. M. (2010). Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2- 2H 1]farnesyl diphosphate catalyzed by recombinant patchoulol synthase. Journal of the American Chemical Society, 132, 2998–3008.

    Article  CAS  Google Scholar 

  12. Christianson, D. W. (2006). Structural biology and chemistry of the terpenoid cyclases. Chemical Reviews, 106, 3412–3442.

    Article  CAS  Google Scholar 

  13. Little, D. B., & Croteau, R. B. (2002). Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Archives of Biochemistry and Biophysics, 402, 120–135.

    Article  CAS  Google Scholar 

  14. Zhou, J., Du, G., & Chen, J. (2014). Novel fermentation processes for manufacturing plant natural products. Current Opinion in Biotechnology, 25, 17–23.

    Article  CAS  Google Scholar 

  15. Chen, Y. & Nielsen, J. (2013). Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Current Opinion in Biotechnology.

  16. Picataggio, S. (2009). Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Current Opinion in Biotechnology, 20, 325–329.

    Article  CAS  Google Scholar 

  17. Bar-Even, A., & Salah Tawfik, D. (2013). Engineering specialized metabolic pathways–is there a room for enzyme improvements? Current Opinion in Biotechnology, 24, 310–319.

    Article  CAS  Google Scholar 

  18. Keller, R., & Thompson, R. (1993). Rapid synthesis of isoprenoid diphosphates and their isolation in one step using either thin layer or flash chromatography. Journal of Chromatography A, 645, 161–167.

    Article  CAS  Google Scholar 

  19. Murakami, A., Takahashi, D., Kinoshita, T., Koshimizu, K., Kim, H. W., Yoshihiro, A., Nakamura, Y., Jiwajinda, S., Terao, J., & Ohigashi, H. (2002). Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis, 23, 795–802.

    Article  CAS  Google Scholar 

  20. Mercke, P., Crock, J., Croteau, R., & Brodelius, P. E. (1999). Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Archives of Biochemistry and Biophysics, 369, 213–222.

    Article  CAS  Google Scholar 

  21. Jones, C. G., Moniodis, J., Zulak, K. G., Scaffidi, A., Plummer, J. A., Ghisalberti, E. L., Barbour, E. L., & Bohlmann, J. (2011). Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. The Journal of Biological Chemistry., 286, 17445–17454.

    Article  CAS  Google Scholar 

  22. Bernhardt, P., & O’Connor, S. E. (2009). Opportunities for enzyme engineering in natural product biosynthesis. Current Opinion in Chemical Biology, 13, 35–42.

    Article  CAS  Google Scholar 

  23. Munck, S. L., & Croteau, R. (1990). Purification and characterization of the sesquiterpene cyclase patchoulol synthase from Pogostemon cablin. Archives of Biochemistry and Biophysics, 282, 58–64.

    Article  CAS  Google Scholar 

  24. O’Maille, P. E., Chappell, J., & Noel, J. P. (2004). A single-vial analytical and quantitative gas chromatography–mass spectrometry assay for terpene synthases. Analytical Biochemistry, 335, 210–217.

    Article  Google Scholar 

  25. Steele, C. L., Crock, J., Bohlmann, J., & Croteau, R. (1998). Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ–selinene synthase and γ–humulene synthase. The Journal of Biological Chemistry, 273, 2078–2089.

    Article  CAS  Google Scholar 

  26. Hua, L., & Matsuda, S. P. (1999). The molecular cloning of 8-epicedrol synthase from Artemisia annua. Archives of Biochemistry and Biophysics, 369, 208–212.

    Article  CAS  Google Scholar 

  27. Crock, J., Wildung, M., & Croteau, R. (1997). Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-farnesene. Proceedings of the National Academy of Sciences, 94, 12833–12838.

    Article  CAS  Google Scholar 

  28. Chappell, J. (1995). Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. The Journal of Biological Chemistry, 270, 7375–7381.

    Article  Google Scholar 

  29. Colby, S. M., Crock, J., Dowdle-Rizzo, B., Lemaux, P. G., & Croteau, R. (1998). Germacrene C synthase from lycopersicon esculentum cv. VFNT cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proceedings of the National Academy of Sciences, 95, 2216–2221.

    Article  CAS  Google Scholar 

  30. Stashenko, E. E., Torres, W. & Morales, Jairo René Martinez (1995). A study of the compositional variation of the essential oil of ylang-ylang (Cananga odorata Hook Fil. et Thomson, forma genuina) during flower development. Journal of High Resolution Chromatography 18, 101–104.

  31. Hymete, A., Rohloff, J., & Iversen, T.-H. (2006). Essential oil from seeds and husks of Aframomum corrorima from Ethiopia. Flavour and Fragance Journal, 21, 642–644.

    Article  CAS  Google Scholar 

  32. Rohloff, J., & Bones, A. M. (2005). Volatile profiling of Arabidopsis thaliana—putative olfactory compounds in plant communication. Phytochemistry, 66, 1941–1955.

    Article  CAS  Google Scholar 

  33. Cai, J., Lin, P., Zhu, X., & Su, Q. (2006). Comparative analysis of Clary sage (S. sclarea L.) oil volatiles by GC–FTIR and GC–MS. Food Chemistry, 99, 401–407.

    Article  CAS  Google Scholar 

  34. Kabouss, A. E., Charrouf, Z., Faid, M., Garneau, F.-X., & Collin, G. (2002). Chemical composition and antimicrobial activity of the leaf essential oil of argania spinosa L. Skeels. Journal of Essential Oil Research, 14, 147–149.

    Article  Google Scholar 

  35. Pinto, E., Salgueiro, L. R., Cavaleiro, C., Palmeira, A., & Gonçalves, M. J. (2007). In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Industrial Crops and Products, 26, 135–141.

    Article  CAS  Google Scholar 

  36. Miyazawa, M., & Tamura, N. (2007). Components of the essential oil from sprouts ofPolygonum hydropiper L. (‘Benitade’). Flavour and Fragance Journal, 22, 188–190.

    Article  CAS  Google Scholar 

  37. Zhang, H. Y., Hu, C. X., Liu, C. P., Li, H. F., Wang, J. S., Yuan, K. L., Tang, J. W., & Xu, G. W. (2007). Screening and analysis of bioactive compounds in traditional Chinese medicines using cell extract and gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 43, 151–157.

    Article  CAS  Google Scholar 

  38. Feng, T., Cui, J.-j., Xiao, Z.-b., Tian, H.-x., Yi, F.-p. & Ma, X. (2011). Chemical composition of essential oil from the peel of Chinese Torreya grandis fort. Organic Chemistry International 2011, 1–5.

    Article  Google Scholar 

  39. Lesueur, D., Ban, N. K., Bighelli, A., Muselli, A., & Casanova, J. (2006). Analysis of the root oil of Fokienia hodginsii (Dunn) Henry et Thomas (cupressaceae) by GC, GC–MS and13C-NMR. Flavour and Fragance Journal, 21, 171–174.

    Article  CAS  Google Scholar 

  40. Cavaleiro, C., Pinto, E., Gonçalves, M. J., & Salgueiro, L. (2006). Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida Strains. Journal of Applied Microbiology, 100, 1333–1338.

    Article  CAS  Google Scholar 

  41. Vichi, S., Riu-Aumatell, M., Mora-Pons, M., Buxaderas, S., & López-Tamames, E. (2005). Characterization of volatiles in different dry gins. Journal of Agricultural and Food Chemistry, 53, 10154–10160.

    Article  CAS  Google Scholar 

  42. Franco, M. R. B., & Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: Umbu-caja (Spondias citherea), Camu-camu (Myrciaria dubia), Araça-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry, 48, 1263–1265.

    Article  CAS  Google Scholar 

  43. Umano, K., Hagi, Y., & Shibamoto, T. (2002). Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin suppl. J.). Journal of Agricultural and Food Chemistry, 50, 5355–5359.

    Article  CAS  Google Scholar 

  44. Wei, A., & Shibamoto, T. (2007). Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural and Food Chemistry, 55, 1737–1742.

    Article  CAS  Google Scholar 

  45. Zhao, Y., Xu, Y., Li, J., Fan, W., & Jiang, W. (2009). Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography–mass spectrometry. Journal of Food Science, 74, C90–C99.

    Article  CAS  Google Scholar 

  46. Karp, F., Zhao, Y., Santhamma, B., Assink, B., Coates, R. M., & Croteau, R. B. (2007). Inhibition of monoterpene cyclases by inert analogues of geranyl diphosphate and linalyl diphosphate. Archives of Biochemistry and Biophysics, 468, 140–146.

    Article  CAS  Google Scholar 

  47. Vardakou, M., Salmon, M., Faraldos, J. A., & O’Maille, P. E. (2014). Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. Methods X., 1, 187–196.

    Google Scholar 

  48. Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., & Milo, R. (2011). The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry, 50, 4402–4410.

    Article  CAS  Google Scholar 

  49. Köllner, T. G., Schnee, C., Gershenzon, J., & Degenhardt, J. (2004). The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. The Plant Cell, 16, 1115–1131.

    Article  Google Scholar 

  50. Landmann, C., Fink, B., Festner, M., Dregus, M., Engel, K.-H., & Schwab, W. (2007). Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Archives of Biochemistry and Biophysics, 465, 417–429.

    Article  CAS  Google Scholar 

  51. Bülow, N., & König, W. A. (2000). The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry, 55, 141–168.

    Article  Google Scholar 

  52. Shishova, E. Y., Di Costanzo, L., Cane, D. E., & Christianson, D. W. (2007). X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry, 46, 1941–1951.

    Article  CAS  Google Scholar 

  53. Zhou, K., & Peters, R. J. (2011). Electrostatic effects on (di)terpene synthase product outcome. Chemical Communications (Cambridge, England), 47, 4074–4080.

    Article  CAS  Google Scholar 

  54. Major, D. T., Freud, Y., & Weitman, M. (2014). Catalytic control in terpenoid cyclases: multiscale modeling of thermodynamic, kinetic, and dynamic effects. Current Opinion in Chemical Biology, 21, 25–33.

    Article  CAS  Google Scholar 

  55. Hong, S.-L., Lee, G.-S., Rahman, S. A., Nur, S., Hamdi, A., Abdalla, O., Awang, K., Aznam Nugroho, N., Malek, A. & Nurestri, S. (2014). Essential oil content of the rhizome of Curcuma purpurascens Bl. (Temu Tis) and its antiproliferative effect on selected human carcinoma cell lines. The Scientific World Journal, 2014, 397430.

  56. Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J.-Z., Xie, X.-Q., Altmann, K.-H., Karsak, M., & Zimmer, A. (2008). Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Academy of Sciences of the United States of America, 105, 9099–9104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Ralf G. Berger and Dr. Ulrich Krings (both Institute of Food Chemistry, Leibniz University Hannover, Germany) for the performance of GC-MS measurements. Additionally, we would like to thank Dr. Torsten Kulke and Dr. Johannes Panten (both) for the supply with chemicals.

Compliance with Ethical Standards

Funding

This study was funded by the European Regional Development Fund (EFRE): Innovation Network “Refinement of plant resources” (ZW-8-80130940).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Beutel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frister, T., Hartwig, S., Alemdar, S. et al. Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes. Appl Biochem Biotechnol 176, 2185–2201 (2015). https://doi.org/10.1007/s12010-015-1707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1707-y

Keywords

Navigation