Skip to main content
Log in

Identification and Characterization of Two Endogenous β-Glucosidases from the Termite Coptotermes formosanus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Coptotermes formosanus is a well-known wood-feeding termite that can degrade lignocellulose polysaccharides efficiently with its unique multi-enzyme catalysis system. β-glucosidase (BG) is one of the important cellulases in its enzyme system. However, there may present multiple endogenous BGs in termite digestive system for various properties and functions. This study aims to characterize two BG homologs and reveal their potential coordinative effect. In this study, two endogenous BG homologs (CfGlu1B and CfGlu1C) from C. formosanus showed different substrate specificity. CfGlu1B favors cellobiose while CfGlu1C favors sucrose. Besides, CfGlu1C exhibited higher alkali resistance than CfGlu1B. Kinetic analysis revealed that CfGlu1B enzyme’s activity toward p-NP-β-D-glucopyranoside (p-NPG) was higher than that of CfGlu1C, and the difference mainly attributes to the turnover number (K cat). In addition, the activity assay showed significant synergistic action of CfGlu1B and CfGlu1C in degrading D-lactosum. For effect of metals, Cu2+ inhibited both enzymes and Ca2+ increased the activity of CfGlu1C but not CfGlu1B. Site-directed mutagenesis analysis indicated that both enzymes lost activities when residues E190 of CfGlu1B and E168 of CfGlu1C were mutated to alanine, respectively, which were essential active centers of the GHF1 enzymes. Moreover, mutation H252N increased the activity of enzyme CfGlu1C by 2.1-fold. This study implies interesting possibilities for better practical biotechnological use in green energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55, 609–632.

    Article  CAS  Google Scholar 

  2. Ohkuma, M. (2003). Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61(1), 1–9.

    Article  CAS  Google Scholar 

  3. Zhang, D., Lax, A. R., Henrissat, B., Coutinho, P., Katiya, N., Nierman, W. C., & Fedorova, N. (2012). Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome. Insect Molecular Biology, 21(2), 235–245.

    Article  Google Scholar 

  4. Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39(1), 453–487.

    Article  CAS  Google Scholar 

  5. Scharf, M. E., Kovaleva, E. S., Jadhao, S., Campbell, J. H., Buchman, G. W., & Boucias, D. G. (2010). Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochemistry and Molecular Biology, 40(8), 611–620.

    Article  CAS  Google Scholar 

  6. Elshafei, A. M., Hassan, M. M., Haroun, B. M., Abdel Fatah, O. M., Atta, H. M., & Othman, A. M. (2009). Purification and properties of an endoglucanase of Aspergillus terreus DSM 826. Journal of Basic Microbiology, 49(5), 426–432.

    Article  CAS  Google Scholar 

  7. Ketudat Cairns, J. R., & Esen, A. (2010). β-Glucosidases. Cellular and Molecular Life Sciences, 67(20), 3389–3405.

    Article  CAS  Google Scholar 

  8. Inoue, T., Murashima, K., Azuma, J. I., Sugimoto, A., & Slaytor, M. (1997). Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology, 43(3), 235–242.

    Article  CAS  Google Scholar 

  9. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 293, 781–788.

    Article  CAS  Google Scholar 

  10. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P., & Davies, G. (1995). Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences, 92(15), 7090–7094.

    Article  CAS  Google Scholar 

  11. Lo, N., Tokuda, G., & Watanabe, H. (2011). Biology of termites: a modern synthesis. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Evolution and function of endogenous termite cellulases (pp. 51–67). Netherlands: Springer.

    Google Scholar 

  12. Shimada, K., & Maekawa, K. (2014). Gene expression and molecular phylogenetic analyses of beta-glucosidase in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Journal of Insect Physiology, 65, 63–69.

    Article  CAS  Google Scholar 

  13. Zhang, D., Lax, A. R., Bland, J. M., Yu, J., Fedorova, N., & Nierman, W. C. (2010). Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Science, 17(3), 245–252.

    Article  CAS  Google Scholar 

  14. Watanabe, H., Noda, H., Tokuda, G., & Lo, N. (1998). A cellulase gene of termite origin. Nature, 394(6691), 330–331.

    Article  CAS  Google Scholar 

  15. Zhang, D., Allen, A. B., & Lax, A. R. (2012). Functional analyses of the digestive β-glucosidase of Formosan subterranean termites (Coptotermes formosanus). Journal of Insect Physiology, 58(1), 205–210.

    Article  CAS  Google Scholar 

  16. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853–859.

    Article  CAS  Google Scholar 

  17. Sun, J. Z., Ding, S. H., & Doran-Peterson, J. (2014). Biological conversion of biomass for fuels and chemicals: exploration from natural utilization systems. In J. Z. Sun & J. X. G. Zhou (Eds.), Lignocellulolytic systems of insects and their potential for viable biofuels (pp. 195–217). Cambridge: RSC Publishing.

    Google Scholar 

  18. Franco Cairo, J. P., Oliveira, L. C., Uchima, C. A., Alvarez, T. M., Citadini, A. P., Cota, J., Leonardo, F. C., Costa-Leonardo, A. M., Carazzolle, M. F., Costa, F. F., Pereira, G. A., & Squina, F. M. (2013). Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi. Insect Biochemistry and Molecular Biology, 43(10), 970–981.

    Article  CAS  Google Scholar 

  19. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2012). Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant-glucosidase from the termite Nasutitermes takasagoensis. Applied and Environmental Microbiology, 78(12), 4288–4293.

    Article  CAS  Google Scholar 

  20. Liu, W., Hong, J., Bevan, D. R., & Zhang, Y. H. P. (2009). Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnology and Bioengineering, 103(6), 1087–1094.

    Article  CAS  Google Scholar 

  21. Jeng, W. Y., Wang, N. C., Lin, M. H., Lin, C. T., Liaw, Y. C., Chang, W. J., Liu, C. I., Liang, P. H., & Wang, A. H. (2011). Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 173(1), 46–56.

    Article  CAS  Google Scholar 

  22. Jeng, W., Wang, N., Lin, C., Chang, W., Liu, C.-I., & Wang, A. H.-J. (2012). High-resolution structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates. Acta Crystallographica, D68, 829–838.

    Google Scholar 

  23. Lee, H. L., Chang, C. K., Jeng, W. Y., Wang, A. H., & Liang, P. H. (2012). Mutations in the substrate entrance region of beta-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Engineering Design and Selection, 25(11), 733–740.

    Article  CAS  Google Scholar 

  24. Franco Cairo, J. P., Leonardo, F. C., Alvarez, T. M., Ribeiro, D. A., Buchli, F., Costa-Leonardo, A. M., Carazzolle, M. F., Costa, F. F., Paes Leme, A. F., Pereira, G. A., & Squina, F. M. (2011). Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnology for Biofuels, 4, 50.

    Article  Google Scholar 

  25. Tokuda, G., Saito, H., & Watanabe, H. (2002). A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5'- and 3'-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology, 32(12), 1681–1689.

    Article  CAS  Google Scholar 

  26. Ni, J., Tokuda, G., Takehara, M., & Watanabe, H. (2007). Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. APPL ENTOMOL ZOOL., 42(3), 457–463.

    Article  CAS  Google Scholar 

  27. Marana, S. R., Jacobs-Lorena, M., Terra, W. R., & Ferreira, C. (2001). Amino acid residues involved in substrate binding and catalysis in an insect digestive beta-glycosidase. Biochimica et Biophysica Acta, 1545(1–2), 41–52.

    Article  CAS  Google Scholar 

  28. Swalley, S. E., Fulghum, J. R., & Chambers, S. P. (2006). Screening factors effecting a response in soluble protein expression: formalized approach using design of experiments. Analytical Biochemistry, 351(1), 122–127.

    Article  CAS  Google Scholar 

  29. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89(6), 1761–1771.

    Article  CAS  Google Scholar 

  30. Sun, J.-Z., & Scharf, M. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science., 17(3), 163–165.

    Article  Google Scholar 

  31. Sun, W., Sammynaiken, R., Chen, L., Maley, J., Schatte, G., Zhou, Y., & Yang, J. (2011). Sphingobium chlorophenolicum dichlorohydroquinone dioxygenase (PcpA) is alkaline resistant and thermally stable. International Journal of Biological Sciences, 7(8), 1171–1179.

    Article  CAS  Google Scholar 

  32. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2013). A novel glucose-tolerant β-glucosidase from the salivary gland of the termite Nasutitermes takasagoensis. Journal of General and Applied Microbiology, 59(2), 141–145.

    Article  CAS  Google Scholar 

  33. Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One, 6(7), e21709.

    Article  CAS  Google Scholar 

  34. Asha, B. M. (2012). Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. Journal of Microbiology and Biotechnology, 22(11), 1501–1509.

    Article  CAS  Google Scholar 

  35. Pei, X. Q., Yi, Z. L., Tang, C. G., & Wu, Z. L. (2011). Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresource Technology, 102(3), 3337–3342.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation (No. 31271272, 31071030), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Jiangsu talent in six major fields-biotechnology and new medicine project, the Jiangsu Natural Science Foundation (No. BK20130506), and the Jiangsu University startup fund (10JDG021).

We are also thankful to the anonymous reviewers for their constructive comments.

Compliance with Ethical Standards

This research has no human participants and/or animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Liu, H., Xu, Q. et al. Identification and Characterization of Two Endogenous β-Glucosidases from the Termite Coptotermes formosanus . Appl Biochem Biotechnol 176, 2039–2052 (2015). https://doi.org/10.1007/s12010-015-1699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1699-7

Keywords

Navigation