Skip to main content

Advertisement

Log in

Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A directed evolution and random mutagenesis were carried out with thermotolerant yeast Kluyveromyces marxianus ATCC 36907 for efficient xylitol production. The final selected strain, K. marxianus 36907-FMEL1, exhibited 120 and 39 % improvements of xylitol concentration and xylitol yield, respectively, as compared to the parental strain, K. marxianus ATCC 36907. According to enzymatic assays for xylose reductase (XR) activities, XR activity from K. marxianus 36907-FMEL1 was around twofold higher than that from the parental strain. Interestingly, the ratios of NADH-linked and NADPH-linked XR activities were highly changed from 1.92 to 1.30 when K. marxianus ATCC 36907 and K. marxianus 36907-FMEL1 were compared. As results of KmXYL1 genes sequencing, it was found that cysteine was substituted to tyrosine at position 36 after strain development which might cause enhanced XR activity from K. marxianus 36907-FMEL1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akinterinwa, O., & Cirino, P. C. (2009). Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Engineering, 11(1), 48–55.

    Article  CAS  Google Scholar 

  2. De Albuquerque, T. L., da Silva, I. J., Jr., de Macedo, G. R., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779–1789.

    Article  Google Scholar 

  3. Boontham, W., Srisuk, N., Kokaew, K., Treeyoung, P., Limtong, S., Thamchaipenet, A., & Yurimoto, H. (2014). Xylitol production by thermotolerant methylotrophic yeast ogataea siamensis and its xylose reductase gene (XYL1) cloning. Chiang Mai Journal of Science, 41(3), 491–502.

    Google Scholar 

  4. de Albuquerque, T. L., Gomes, S. D. L., Marques, Jr J. E., Silva, Jr I. J. d., Rocha M. V. P. (2014). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today. doi: 10.1016/j.cattod.2014.10.054

  5. Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297–306.

    Article  CAS  Google Scholar 

  6. Fonseca, G., Heinzle, E., Wittmann, C., & Gombert, A. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology, 79(3), 339–354.

    Article  CAS  Google Scholar 

  7. Goshima, T., Negi, K., Tsuji, M., Inoue, H., Yano, S., Hoshino, T., & Matsushika, A. (2013). Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. Journal of Bioscience and Bioengineering, 116(5), 551–554.

    Article  CAS  Google Scholar 

  8. Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hagerdal, B., Penttila, M., & Keranen, S. (1991). Xylitol production by recombinant Saccharomyces cerevisiae. Nature Biotechnology, 9(11), 1090–1095.

    Article  CAS  Google Scholar 

  9. Heo, P., Yang, T.-J., Chung, S.-C., Cheon, Y., Kim, J.-S., Park, J.-B., Koo, H. M., Cho, K. M., Seo, J.-H., Park, J. C., & Kweon, D.-H. (2013). Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. Journal of Biotechnology, 167(3), 323–325.

    Article  CAS  Google Scholar 

  10. Hyvonen, L., Koivistoinen, P., & Voirol, F. (1982). Food technological evaluation of xylitol. Advances in Food Research, 28, 373–403.

    Article  CAS  Google Scholar 

  11. Jeong, H., Lee, D.-H., Kim, S. H., Kim, H.-J., Lee, K., Song, J. Y., Kim, B. K., Sung, B. H., Park, J. C., Sohn, J. H., Koo, H. M., & Kim, J. F. (2012). Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. Marxianus KCTC 17555. Eukaryotic Cell, 11(12), 1584–1585.

    Article  CAS  Google Scholar 

  12. Krieg, D. R. (1963). Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics, 48(4), 561–580.

    CAS  Google Scholar 

  13. Lee, K.-S., Kim, J.-S., Heo, P., Yang, T.-J., Sung, Y.-J., Cheon, Y., Koo, H., Yu, B., Seo, J.-H., Jin, Y.-S., Park, J., & Kweon, D.-H. (2013). Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 97(5), 2029–2041.

    Article  CAS  Google Scholar 

  14. Limtong, S., Sringiew, C., & Yongmanitchai, W. (2007). Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresource Technology, 98(17), 3367–3374.

    Article  CAS  Google Scholar 

  15. Makinen, K. (1992). Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. The Journal of Applied Nutrition, 44(1), 16–28.

    Google Scholar 

  16. Melaja, A. J. & Hamalainen, L. (1977). Process for making xylitol. US Patent 4,008,285.

  17. Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601.

    Article  CAS  Google Scholar 

  18. Morton, R. E., & Evans, T. A. (1992). Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Analytical Biochemistry, 204(2), 332–334.

    Article  CAS  Google Scholar 

  19. Oh, E. J., Ha, S. J., Kim, S. R., Lee, W. H., Galazka, J. M., Cate, J. H. D., & Jin, Y. S. (2013). Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabolic Engineering, 15(1), 226–234.

    Article  CAS  Google Scholar 

  20. Pecota, D. C., Rajgarhia, V., & Da Silva, N. A. (2007). Sequential gene integration for the engineering of Kluyveromyces marxianus. Journal of Biotechnology, 127(3), 408–416.

    Article  CAS  Google Scholar 

  21. Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304–3308.

    Article  CAS  Google Scholar 

  22. Rodrigues, R. L. B., Kenealy, W., & Jeffries, T. (2011). Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Journal of Industrial Microbiology and Biotechnology, 38(10), 1649–1655.

    Article  CAS  Google Scholar 

  23. de Silva, D. D. V., de Arruda, P. V., Vicente F. M. C. F, Sene L., de Silva, S. S., de Almeida Felipe, M. d. G. (2014). Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Annals of Microbiology, 65(2), 687–694.

  24. Werpy, T. & Petersen, G. (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas, DTIC Document. 9.12.3

  25. Wisniak, J., Hershkowitz, M., Leibowitz, R., & Stein, S. (1974). Hydrogenation of xylose to xylitol. Industrial and Engineering Chemistry Product Research and Development, 13(1), 75–79.

    Article  CAS  Google Scholar 

  26. Zhang, B., Zhang, L., Wang, D., Gao, X., & Hong, J. (2011). Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. Journal of Industrial Microbiology and Biotechnology, 38(12), 2001–2010.

    Article  CAS  Google Scholar 

  27. Zhang, J., Zhang, B., Wang, D., Gao, X., & Hong, J. (2014). Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresource Technology, 152, 192–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A4A01004700). This work was supported by the 2012 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Jin Ha.

Additional information

Prepared for submission to the Applied Biochemistry and Biotechnology

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Park, JB., Jang, SW. et al. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity. Appl Biochem Biotechnol 176, 1975–1984 (2015). https://doi.org/10.1007/s12010-015-1694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1694-z

Keywords

Navigation