Skip to main content
Log in

Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flaibani, A., Olsen, Y., & Painter, T. J. (1989). Polysaccharides in desert reclamation: composition of exocellular proteoglycan complexes produced by filamentous blue green and unicellular green edaphic algae. Carbohydrate Research, 190, 235–248.

    Article  CAS  Google Scholar 

  2. De Philippis, R., Margheri, M. C., Materassi, R., & Vincenzini, M. (1998). Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Applied and Environmental Microbiology, 64, 1130–1132.

    Google Scholar 

  3. De Philippis, R., Sili, C., Paperi, R., & Vincenzini, M. (2001). Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. Journal of Applied Phycology, 13, 293–299.

    Article  Google Scholar 

  4. Ozturk, S., Aslim, B., & Suludere, Z. (2009). Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 100, 5588–5593.

    Article  CAS  Google Scholar 

  5. Bender, J., & Phillips, P. (2004). Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource Technology, 94, 229–238.

    Article  CAS  Google Scholar 

  6. Freire-Nordi, C. S., Vieira, A. A. H., & Nascimento, O. R. (2005). The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochemistry, 40, 2215–2224.

    Article  CAS  Google Scholar 

  7. Ozturk, S., & Aslim, B. (2008). Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environmental Science and Pollution Research International, 15, 478–480.

    Article  CAS  Google Scholar 

  8. Liu, Y., Lam, M. C., & Fang, H. P. (2001). Adsorption of heavy metals by EPS of activated sludge. Water Science and Technology, 43, 59–66.

    CAS  Google Scholar 

  9. Guibaud, G., Van Hullebusch, E., Bordas, F., Abzac, P., & Joussein, E. (2009). Sorption of Cd(II) and Pb(II) by exoplymeric substance (EPS) extracted from activated sludges and pure bacterial strains: modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100, 2959–2968.

    Article  CAS  Google Scholar 

  10. Guibaud, G., Van Hullebusch, E., & Bordas, F. (2006). Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modeling. Chemosphere, 64, 1955–1962.

    Article  CAS  Google Scholar 

  11. Zhang, D. Y., Wang, J. L., & Pan, X. L. (2006). Cadmium sorption by EPS produced by anaerobic sludge under sulphate-reducing conditions. Journal of Hazardous Materials, 138, 589–593.

    Article  CAS  Google Scholar 

  12. Comte, S., Guibaud, G., & Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry, 41, 815–823.

    Article  CAS  Google Scholar 

  13. Zumriye, A. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026.

    Article  Google Scholar 

  14. Zhang, Z. Q., Xia, S. Q., Wang, X. J., Yang, A. M., Xu, B., Chen, L., Zhu, Z. L., Zhao, J. F., Nicole, J. R., & Didier, L. (2009). A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1. Journal of Hazardous Materials, 163, 279–284.

    Article  CAS  Google Scholar 

  15. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Baziere, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  16. Plude, J. L., Parker, D. L., Schommer, O. J., Timmerman, R. J., Hagstrom, S. A., Joers, J. M., & Hnasko, R. (1991). Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flosaquae C3-40. Applied and Environmental Microbiology, 57, 1696–1700.

    CAS  Google Scholar 

  17. Klock, J. H., Weiland, A., Seifert, R., & Michaeli, W. (2007). Extracellular polymeric substances (EPS) from cyanobacterial mats: characterization and isolation method optimization. Marine Biology, 152, 1077–1085.

    Article  CAS  Google Scholar 

  18. Spiro, R. G. (1966). Analysis of sugars found in glycoproteins. Methods in Enzymology, 8, 3–26.

    Article  CAS  Google Scholar 

  19. Herbert, T. D., Phipps, P. J., & Strange, R. E. (1971). Chemical analysis of microbial cells. In J. R. Morris & D. W. Ribbon (Eds.), Methods of microbiology (pp. 209–234). NY: Academic.

    Google Scholar 

  20. Galambos, J. T. (1967). The reaction of carbazole with carbohydrates. 1. Effect of borate and sulfamate on the carbazole color of sugars. Analytical Biochemistry, 19, 119–132.

    Article  CAS  Google Scholar 

  21. Bar-or, Y., & Shilo, M. (1987). Characterization of macromolecular flocculants produced by Phormidium sp. strain J and by Anabaenopsis circularis PCCC 6720. Applied and Environmental Microbiology, 53, 2226–2230.

    CAS  Google Scholar 

  22. Hardy, R. F. W., Burns, R. L., & Holsten, R. D. (1973). Applications of the acetylene reduction assay for measurement of nitrogen fixation. Soil Biology and Biochemistry, 5, 47–81.

    Article  CAS  Google Scholar 

  23. Avijeet, S. O., Oinam, G., Singh, K. O., & Tiwari, O. N. (2013). Isolation of fresh water cyanobacterial DNA of north east India by modified xanthogenate method. International Journal of Research in BioSciences, 2(2), 75–82.

    Google Scholar 

  24. Nubel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA gene from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332.

    CAS  Google Scholar 

  25. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  26. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  27. Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  28. Otero, A., & Vincenzini, M. (2003). Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. Journal of Biotechnology, 102, 143–152.

    Article  CAS  Google Scholar 

  29. Jindal, N., Singh, D. P., & Khattar, J. S. (2011). Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria formosa. World Journal of Microbiology and Biotechnology, 27, 2139–2146.

    Article  CAS  Google Scholar 

  30. Khattar, J. S., Singh, D. P., Jindal, N., Kaur, N., Singh, Y., Rahi, P., & Gulati, A. (2010). Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Applied Biochemistry and Biotechnology, 162, 1327–1338.

    Article  CAS  Google Scholar 

  31. Nicolaus, B., Panico, A., Lama, L., Romano, I., Manca, M. C., De Giulio, A., & Gambacorta, A. (1999). Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 52, 63–647.

    Article  Google Scholar 

  32. Singh, S., & Das, S. (2011). Screening, production, optimization and characterization of cyanobacterial polysaccharide. World Journal of Microbiology and Biotechnology, 27, 1971–1980.

    Article  CAS  Google Scholar 

  33. Mota, R., Guimaraes, R., Buttel, Z., Rossi, F., Colica, G., Silva, C. J., Santos, C., Gales, L., Zille, A., De Philippis, R., Pereira, S. B., & Tamaqnini, P. (2013). Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydrate Polymers, 92, 408–1415.

    Article  Google Scholar 

  34. Raus Madieldo, P., & De Los Reyes Gavilan, C. G. (2005). Invited review: methods for the screening, isolation and characterization of exopolysaccharides produced by lactic acid bacteria. Journal of Dairy Science, 88, 843–856.

    Article  Google Scholar 

  35. Sutherland, I. W. (1994). Structure-function relationships in microbial exopolysaccharides. Biotechnology Advances, 12, 393–448.

    Article  CAS  Google Scholar 

  36. Ohki, K., Nguyen, Q. T., Yoshikawa, S., Kanesaki, Y., Okajima, M., Kaneko, T., & Tran, H. T. (2014). Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated in a rice field of Vietnam. Journal of Applied Phycology, 26(1), 265–272.

    Article  CAS  Google Scholar 

  37. De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708.

    Article  CAS  Google Scholar 

  38. Fattom, A., & Shilo, M. (1984). Phormidium J-1 bioflocculant: production and activity. Archives of Microbiology, 139, 421–426.

    Article  CAS  Google Scholar 

  39. Bender, J., Rodriguezeaton, S., Ekanemesang, U. M., & Phillips, P. (1994). Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Applied and Environmental Microbiology, 60, 2311–2315.

    CAS  Google Scholar 

  40. Kroen, W. K., & Rayburn, W. R. (1984). Influence of growth status and nutrients on extracellular polysaccharides synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). Journal of Phycology, 20, 253–257.

    Article  CAS  Google Scholar 

  41. Moreno, J., Vargas, M. A., Madiedo, J. M., & Munoz, J. (2000). Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 333047. Biotechnology and Bioengineering, 67, 283–290.

    Article  CAS  Google Scholar 

  42. West, T. P. (2000). Exopolysaccharide production by entrapped cells of the fungus Aureobasidium pullulans ATCC 201253. Journal of Basic Microbiology, 40, 397–401.

    Article  CAS  Google Scholar 

  43. West, T. P. (2011). Effect of carbon source on polysaccharide production by alginate-entrapped Aureobasidium pullulans ATCC 42023 cells. Journal of Basic Microbiology, 51, 673–677.

    Article  CAS  Google Scholar 

  44. Kumar, C. G., Joo, H., Kavali, R., & Choi, J. (2004). Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate. World Journal of Microbiology and Biotechnology, 20, 833–836.

    Article  Google Scholar 

  45. De Philippis, R., & Vincenzini, M. (1998). Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews, 22, 151–175.

    Article  Google Scholar 

  46. Kumar, A. S., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides: a perception. Journal of Basic Microbiology, 47, 103–117.

    Article  CAS  Google Scholar 

  47. Jindal, N., Singh, D. P., & Khattar, J. S. (2013). Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium Lyngbya stagnina. Journal of Basic Microbiology, 53, 902–912.

    Article  CAS  Google Scholar 

  48. Shah, V., Garg, N., & Madamwar, D. (1999). Exopolysaccharide production by a marine cyanobacterium Cyanothece sp.: application in dye removal by its gelation phenomenon. Applied Biochemistry and Biotechnology, 82, 81–90.

    Article  CAS  Google Scholar 

  49. Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97, 1822–1827.

    Article  CAS  Google Scholar 

  50. Trabelsi, L., Msakni, N., Ouada, H. B., Bacha, H., & Roudesli, S. (2009). Partial characterisation of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnology and Bioprocess Engineering, 14, 1407–1415.

    Article  Google Scholar 

  51. Zhang, Z., Bo, L., Xia, S., Wang, X., & Yang, A. (2007). Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. Journal of Environmental Sciences, 19(6), 667–673.

    Article  Google Scholar 

  52. Yim, J. H., Kim, S. J., Ahn, S. H., & Lee, H. K. (2007). Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresource Technology, 98, 361–367.

    Article  CAS  Google Scholar 

  53. Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33, 917–941.

    Article  CAS  Google Scholar 

  54. Phlips, E. J., Zeman, C., & Hansen, P. (1989). Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium Synechococcus sp. (cyanophyta). Journal of Applied Phycology, 1, 137–145.

    Article  Google Scholar 

  55. Fresnedo, O., & Serra, J. L. (1992). Effect of nitrogen starvation on the biochemistry of Phormidium laminosum (Cyanophyceae). Journal of Phycology, 28, 786–793.

    Article  CAS  Google Scholar 

  56. Sangar, V. K., & Dugan, P. R. (1972). Polysaccharide produced by Anacystis nidulans: its ecological implication. Applied Microbiology, 24, 732–734.

    CAS  Google Scholar 

  57. De Philippis, R., Margheri, M. C., Pelosi, E., & Ventura, S. (1993). Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology, 5, 387–394.

    Article  Google Scholar 

  58. Tischer, R. G., & Davis, E. B. (1971). The effect of various nitrogen sources upon the production of extracellular polysaccharide by the blue-green alga Anabaena flosaquae A-37. Journal of Experimental Botany, 22, 546–551.

    Article  CAS  Google Scholar 

  59. Herrero, A., Muro-Pastor, A., & Flores, E. (2001). Nitrogen control in cyanobacteria. Journal of Bacteriology, 183, 411–425.

    Article  CAS  Google Scholar 

  60. Li, P., Harding, S. E., & Liu, Z. (2001). Cyanobacterial exoplysaccharides: their nature and potential biotechnological applications. Biotechnology and Genetic Engineering, 18, 375–404.

    Article  CAS  Google Scholar 

  61. Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimisation of fermentive production of poly (gamma glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100, 826–832.

    Article  CAS  Google Scholar 

  62. Ramus, J. (1977). Alcian-blue: a quantitative aqueous assay for algal acid and sulfated polysaccharides. Journal of Phycology, 13, 345–348.

    CAS  Google Scholar 

  63. Smith, R. W., & Miettinen, M. (2006). Microorganisms in flotation and flocculation: future technology or laboratory curiosity? Minerals Engineering, 19, 548–553.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, IBSD, Imphal, Manipur, India for providing laboratory facilities and Dr. Yogesh S. Shouche, Scientist, MCC-NCCS, Pune for scientific input in the present manuscript and the Department of Biotechnology, Government of India for financial assistance (vide grant no. BT/218/NE/TBP/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onkar Nath Tiwari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, O.N., Khangembam, R., Shamjetshabam, M. et al. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions. Appl Biochem Biotechnol 176, 1950–1963 (2015). https://doi.org/10.1007/s12010-015-1691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1691-2

Keywords

Navigation