Skip to main content

Advertisement

Log in

Methylene Salicylicacidyl Hexamer (MSH) Has DNAse Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salicylic acid and formaldehyde form heterogenous methyl/methylene salicylicacidyl oligomers and polymers in presence of sulfuric acid (H2SO4) and sodium nitrite (NaNO2). One of the oligomers as aurintricarboxylic acid (ATA), methelene bridged salicylic acid trimer, has been identified and explored in biochemical research, which is a potent inhibitor of many biological processes. A very few reports are also available on dimer, trimer, and tetramer of methelene bridged salicylic acids from same reaction mixture. Herein, we report the isolation and biochemical screening of partial purified low-molecular component as methylene salicylicacidyl hexamer (MSH) from the above reaction mixture. The interaction of methylene salicylicacidyl oligomer with DNA was studied by agarose and polyacrylamide gel electrophoresis, which suggest that methylene salicylicacidyl oligomer has DNAse activity. So far, no such significant reports are available on low-molecular oligomer of methelene bridged salicylic acids. In further, we also attempted to investigate the nature of nuclease activity, which clearly indicates DNA exonuclease type of activity. Further studies are needed to establish the mechanism of actions.

Synthesis of methylene salicylic acic (MSH) and DNAase studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cushman, M., & Kanamathareddy, S. (1990). Synthesis of the covalent hydrate of the incorrectly assumed structure of aurintricarboxylic acid (ATA). Tetrahedron, 46, 1491–1498.

    Article  CAS  Google Scholar 

  2. Cushman, M., Kanamathareddy, S., De Clercq, E., Schols, D., Goldman, M. E., & Bowen, J. A. (1991). Synthesis and anti-HIV activities of low molecular weight aurintricarboxylic acid fragments and related compounds. Journal of Medicinal Chemistry, 34, 337–342.

    Article  CAS  Google Scholar 

  3. Gonzalez, R. G., Blackburn, B. J., & Schleich, T. (1979). Fractionation and structural elucidation of the active components of aurintricarboxylic acid, a potent inhibitor of protein nucleic acid interactions. Biochimica et Biophysica Acta, 562, 534–545.

    Article  CAS  Google Scholar 

  4. Wang, P., Kozlowski, J., & Cushman, M. (1992). Isolation and structure elucidation of low-molecular-weight components of aurintricarboxylic acid (ATA). Journal of Organic Chemistry, 57, 3861–3866.

    Article  CAS  Google Scholar 

  5. Gonzalez, R. G., Haxo, R. S., & Schleich, T. (1980). Mechanism of action of polymeric aurintricarboxylic acid, a potent inhibitor of protein–nucleic acid interactions. Biochemistry, 19, 4299–4303.

    Article  CAS  Google Scholar 

  6. Kreamer, B. L., Anderson, J., Liu, D. S., Sparks, M. B., & Richardson, A. (1978). Inhibition of cell-free protein synthesis by analogues of aurintricarboxylic acid. Canadian Journal of Biochemistry, 56, 1162–1167.

    Article  CAS  Google Scholar 

  7. Thompson, D. C., & Reed, M. (1995). Inhibition of NAD(H)/NADP(H)—requiring enzymes by aurintricarboxylic acid. Toxicology Letters, 81, 141–149.

    Article  CAS  Google Scholar 

  8. Hung, H. C., Tseng, C. P., Yang, J. M., Ju, Y. W., Tseng, S. N., Chen, Y. F., Chao, Y. S., Hsieh, H. P., Shih, S. R., & Hsu, J. T. (2009). Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Research, 81, 123–131.

    Article  CAS  Google Scholar 

  9. Gagliardi, A. R., & Collins, D. C. (1994). Inhibition of angiogenesis by aurintricarboxylic acid. Anticancer Research, 14, 475–479.

    CAS  Google Scholar 

  10. McCune, S. A., Foe, L. G., Kemp, R. G., & Jurin, R. R. (1989). Aurintricarboxylic acid is a potent inhibitor of phosphofructokinase. The Biochemical Journal, 259, 925–927.

    CAS  Google Scholar 

  11. Novi, A. M. (1977). Aurintricarboxylic acid (ATA) and DNA synthesis. 2. Effect of ATA on structure and function of crypts of small intestine. Virchows Archiv B-Cell Pathology Including Molecular Pathology, 23, 155–162.

    CAS  Google Scholar 

  12. Nakane, H., Balzarini, J., Declercq, E., & Ono, K. (1988). Differential Inhibition of various deoxyribonucleic-acid polymerases by Evans blue and aurintricarboxylic acid. European Journal of Biochemistry, 177, 91–96.

    Article  CAS  Google Scholar 

  13. Sharma, R. K., Chopra, S., Sharma, S. D., Pande, V., Ramos, M. J., Meguro, K., Inoue, J., & Otsuka, M. (2006). Biological evaluation, chelation, and molecular modeling studies of novel metal-chelating inhibitors of NF-kappaB-DNA binding: structure activity relationships. Journal of Medicinal Chemistry, 49, 3595–3601.

    Article  CAS  Google Scholar 

  14. Suram, A., Hegde, M. L., & Rao, K. S. (2007). A new evidence for DNA nicking property of amyloid beta-peptide (1–42): relevance to Alzheimer’s disease. Archives of Biochemistry and Biophysics, 463, 245–252.

    Article  CAS  Google Scholar 

  15. Ghosh, U., Giri, K., & Bhattacharyya, N. P. (2009). Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase. Spectrochimica acta. Part A, molecular and biomolecular spectroscopy, 74, 1145–1151.

    Article  Google Scholar 

  16. Hung, H. C., Chen, T. C., Fang, M. Y., Yen, K. J., Shih, S. R., Hsu, J. T., & Tseng, C. P. (2010). Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. The Journal of Antimicrobial Chemotherapy, 65, 676–683.

    Article  CAS  Google Scholar 

  17. Cushman, M., Wang, P. L., Chang, S. H., Wild, C., De Clercq, E., Schols, D., Goldman, M. E., & Bowen, J. A. (1991). Preparation and anti-HIV activities of aurintricarboxylic acid fractions and analogues: direct correlation of antiviral potency with molecular weight. Journal of Medicinal Chemistry, 34, 329–337.

    Article  CAS  Google Scholar 

  18. Zaccagnini, G., Maione, B., Lorenzini, R., & Spadafora, C. (1998). Increased production of mouse embryos in in vitro fertilization by preincubating sperm cells with the nuclease inhibitor aurintricarboxylic acid. Biology of Reproduction, 59, 1549–1553.

    Article  CAS  Google Scholar 

  19. Baumann, H., Hofmann, R., Lammers, M., Schimpff-Weiland, G., & Follmann, H. (1984). Aurintricarboxylic acid and polynucleotides as novel inhibitors of ribonucleotide reductases. Zeitschrift fur Naturforschung Section C: Biosciences, 39, 276–281.

    CAS  Google Scholar 

  20. Cushman, M., Wang, P., Reymen, D., Este, J., Witvrouw, M., Neyts, J., & Declercq, E. (1995). Anti-HIV and anti-HCMV activities of new aurintricarboxylic acid analogs. Antiviral Chemistry & Chemotherapy, 6, 179–186.

    Article  CAS  Google Scholar 

  21. Blumenthal, T., & Landers, T. A. (1973). The inhibition of nucleic acid-binding proteins by aurintricarboxylic acid. Biochemical and Biophysical Research Communications, 55, 680–688.

    Article  CAS  Google Scholar 

  22. Hallick, R. B., Chelm, B. K., Gray, P. W., & Orozco, E. M., Jr. (1977). Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Research, 4, 3055–3064.

    Article  CAS  Google Scholar 

  23. Heisig, G. B., & Lauer, W. M. (1929). Ammonium salt of aurintricarboxylic acid. Organic Syntheses, 9, 8.

    Article  CAS  Google Scholar 

  24. Heisig, G. B., & Lauer, W. M. (1956). Ammonium salt of aurintricarboxylic acid. Organic Syntheses, 1, 54.

    Google Scholar 

  25. Caro, N. (1892). Concerning hydroxyaurins and hydroxyaurin- carboxylic acids. Chemische Berichte, 25, 939.

    Google Scholar 

Download references

Acknowledgments

We are thankful to NISER and Department of Atomic Energy (DAE), Govt. of India, for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra K. Sharma.

Additional information

Ankit Tiwari, Chandrasekhar Reddy Gade, Manjusha Dixit and Nagendra K. Sharma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Gade, C.R., Dixit, M. et al. Methylene Salicylicacidyl Hexamer (MSH) Has DNAse Activity. Appl Biochem Biotechnol 176, 1791–1800 (2015). https://doi.org/10.1007/s12010-015-1678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1678-z

Keywords

Navigation