Skip to main content
Log in

Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol−1, TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol−1, TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol−1, TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol−1, TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07–0.05, NADP+ K M 0.02–1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho, D. H., Shin, S. J., Bae, Y., Park, C., & Kim, Y. H. (2010). Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresource Technology, 101, 4947–4951.

    Article  CAS  Google Scholar 

  2. Gurpilhares, D. B., Pessoa, A., Jr., & Roberto, I. C. (2006). Glucose-6-phosphate dehydrogenase and xylitol production by Candida guilliermondii FTI 20037 using statistical experimental design. Process Biochemistry, 41, 631–637.

    Article  CAS  Google Scholar 

  3. Cortez, E. V., Pessoa, A., Jr., Felipe, M. G. A., Roberto, I. C., & Vitolo, M. (2004). Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate. Journal of Chromatography B, 807, 47–54.

    Article  CAS  Google Scholar 

  4. Gurpilhares, D. B., Hasmann, F. A., Pessoa, A., Jr., & Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiologyand Biotechnology, 36, 87–93.

    Article  CAS  Google Scholar 

  5. Hasmann, F. A., Gurpilhares, D. B., Roberto, I. C., Converti, A., & Pessoa, A., Jr. (2007). New combined kinetic and thermodynamic approach to model glucose-6-phosphate dehydrogenase activity and stability. Enzyme and Microbial Technology, 40, 849–858.

    Article  CAS  Google Scholar 

  6. Cui, Y., Barford, J. P., & Renneberg, R. (2008). Amperometric trienzyme ATP biosensors based on the coimmobilization of salicylate hydroxylase, glucose-6-phosphate dehydrogenase and hexokinase. Sensors Actuators B Chem, 132, 1–4.

    Article  CAS  Google Scholar 

  7. Monosíka, R., Stred’ansky, M., Luspai, K., Magdolen, P., & Sturdík, E. (2012). Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode. Enzyme and Microbial Technology, 50, 227–232.

    Article  Google Scholar 

  8. Zhi, W., Song, J., Ouyang, F., & Bi, J. (2005). Application of response surface methodology to the modeling of α-amylase purification by aqueous two-phase systems. Journal of Biotechnology, 118, 157–165.

    Article  CAS  Google Scholar 

  9. Ling, Y.-Q., Nie, H.-L., Su, S.-N., Branford-White, C., & Zhu, L.-M. (2010). Optimization of affinity partitioning conditions of papain in aqueous two-phase system using response surface methodology. Separation and Purification Technology, 73, 343–348.

    Article  CAS  Google Scholar 

  10. Rito-Palomares, M., & Lyddiatt, A. (2002). Process integration using aqueous two-phase partition for the recovery of intracellular proteins. Chemical Engineering Journal, 87, 313–319.

    Article  CAS  Google Scholar 

  11. Marcos, J. C., Fonseca, L. P., Ramalho, M. T., & Cabral, J. M. S. (1999). Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glycol)-sodium citrate aqueous two-phase systems. Journal of Chromatography B, 734, 15–22.

    Article  CAS  Google Scholar 

  12. Marcos, J. C., Fonseca, L. P., Ramalho, M. T., & Cabral, J. M. S. (2002). Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems. Enzyme and Microbial Technology, 31, 1006–1014.

    Article  CAS  Google Scholar 

  13. Rahimpour, F., Mamo, G., Feyzi, F., Maghsoudi, S., & Hatti-Kaul, R. (2007). Optimizing refolding and recovery of active recombinant Bacillus halodurans xylanase in polymer–salt aqueous two-phase system using surface response analysis. Journal of Chromatography. A, 1141, 32–40.

    Article  CAS  Google Scholar 

  14. Mayerhoff, Z. D. V. L., Roberto, I. C., & Franco, T. T. (2004). Purification of xylose reductase from Candida mogii in aqueous two-phase systems. Biochemical Engineering Journal, 18, 217–223.

    Article  CAS  Google Scholar 

  15. Biazus, J. P. M., Santana, J. C. C., Souza, R. R., Jordão, E., & Tambourgi, E. B. (2007). Continuous extraction of α- and β-amylases from Zea mays malt in a PEG4000/CaCl2 ATPS. Journal of Chromatography B, 858, 227–233.

    Article  CAS  Google Scholar 

  16. Sales, A. E., Souza, F. A. S. D., Teixeira, J. A., Porto, T. S., & Porto, A. L. F. (2013). Integrated process production and extraction of the fibrinolytic protease from Bacillus sp. UFPEDA 485. Applied Biochemistry and Biotechnology, 170, 1676–1688.

    Article  CAS  Google Scholar 

  17. Kammoun, R., Chouayekh, H., Abid, H., Naili, B., & Bejar, S. (2009). Purification of CBS 819.72 α-amylase by aqueous two-phase systems: modelling using response surface methodology. Biochemical Engineering Journal, 46, 306–312.

    Article  CAS  Google Scholar 

  18. Mohammadi, H. S., & Omidinia, E. (2013). Process integration for the recovery and purification of recombinant Pseudomonas fluorescens proline dehydrogenase using aqueous two-phase systems. Journal of Chromatography B, 929, 11–17.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Albertsson, P. A. (1986). Partition of cells particles and macromolecules (3rd ed.). New York: Wiley Interscience.

    Google Scholar 

  21. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–6.

    Article  CAS  Google Scholar 

  22. Zaslavsky, B. Y. (1995). Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. New York: Marcel Dekker.

    Google Scholar 

  23. Kepka, C., Collet, E., Roos, F., Tjerneld, F., & Veide, A. (2005). Two-phase recovery process for tryptophan tagged cutinase: interfacing aqueous two-phase extraction and hydrophobic interaction chromatography. Journal of Chromatography. A, 1075, 33–41.

    Article  CAS  Google Scholar 

  24. Souza, M. A., Ribeiro, M. Z., Silva, D. P., Pessoa, A., Jr., & Vitolo, M. (2002). Effect of pH on the stability of hexokinase and glucose-6-phosphate dehydrogenase. Applied Biochemistry and Biotechnology, 98–100, 265–272.

    Article  Google Scholar 

  25. Mayolo-Deloisa, K., Trejo-Hernandez, M. R., & Rito-Palomares, M. (2009). Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochemistry, 44, 435–439.

    Article  CAS  Google Scholar 

  26. Farruggia, B., Nerli, B., & Picó, G. (2003). Study of serum albumin-polyethyleneglycol interaction to predict the protein partitioning in aqueous two-phase systems. Journal of Chromatography B, 798, 25–33.

    Article  CAS  Google Scholar 

  27. Huddlestone, J., Abelaira, J. C., Wang, R., & Lyddiatt, A. (1996). Protein partition between the different phases comprising poly(ethylene glycol)-salt aqueous two-phase systems, hydrophobic interaction chromatography and precipitation: a generic description in terms of salting-out effects. Journal of Chromatography B Biomedical Applications, 680, 31–41.

    Article  Google Scholar 

  28. Silva, G. M. M., Marques, D. A. V., Porto, T. S., Lima Filho, J. L., Teixeira, J. A. C., Pessoa-Júnior, A., & Porto, A. L. F. (2013). Extraction of fibrinolytic proteases from Streptomyces sp. DPUA1576 using PEG-phosphate aqueous two-phase systems. Fluid Phase Equilibria, 339, 52–57.

    Article  Google Scholar 

  29. Oliveira, L. A., Sarubbo, L. A., Porto, A. L. F., Campos-Takaki, G. M., & Tambourgi, E. B. (2002). Partition of trypsin in aqueous two-phase systems of poly(ethylene glycol) and cashew-nut tree gum. Process Biochemistry, 38, 693–699.

    Article  CAS  Google Scholar 

  30. Pinotti, L. M., Fonseca, L. P., Prazeres, D. M. F., Rodrigues, D. S., Nuccia, E. R., & Giordano, R. L. C. (2009). Recovery and partial purification of penicillin G acylase from E. coli homogenate and B. megaterium culture medium using an expanded bed adsorption column. Biochemical Engineering Journal, 44, 111–118.

    Article  CAS  Google Scholar 

  31. Hasmann, F. A., Gurpilhares, D. B., Roberto, I. C., & Pessoa, A., Jr. (2007). Response surface methodology for the evaluation of glucose-6-phosphate dehydrogenase enrichment process by soybean lecithin reversed micelles. Journal of Chromatography B, 847, 262–266.

    Article  CAS  Google Scholar 

  32. Faria, J. T., Sampaio, F. C., Converti, A., Passos, F. M. L., Minim, V. P. R., & Minim, L. A. (2009). Use of response surface methodology to evaluate the extraction of Debaryomyces hansenii xylose reductase by aqueous two-phase system. Journal of Chromatography B, 877, 3031–3037.

    Article  Google Scholar 

  33. Porto, T. S., Silva, G. M. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima-Filho, J. L., Converti, A., Porto, A. L. F., & Pessoa, A., Jr. (2008). Liquid-liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing, 47, 716–721.

    Article  CAS  Google Scholar 

  34. Ulusu, N. N., Kus, M. S., Acan, N. L., & Tezcan, E. F. (1999). A rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens. International Journal of Biochemistry and Cell Biology, 31, 787–796.

    Article  CAS  Google Scholar 

  35. Hasmann, F. A., Cortez, D. V., Gurpilhares, D. B., Santos, V. C., Roberto, I. C., & Pessoa-Júnior, A. (2007). Continuous counter-current purification of glucose-6-phosphate dehydrogenase using liquid–liquid extraction by reverse micelles. Biochemical Engineering Journal, 34, 236–241.

    Article  CAS  Google Scholar 

  36. Ibraheem, O., Adewale, I. O., & Afolayan, A. (2005). Purification and properties of glucose-6-phosphate dehydrogenase from Aspergillus aculeatus. Journal of Biochemistry and Molecular Biology, 38, 584–590.

    Article  CAS  Google Scholar 

  37. Bergmeyer, H. U. (1984). Methods of enzymatic analysis (3rd ed.). Wheinheim: Velag Chemie.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the State of São Paulo Research Foundation (Fapesp-Proc No. 03/12855-9), Coordination for the Improvement of Higher Level Personnel (CAPES), and National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês C. Roberto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurpilhares, D.B., Pessoa, A. & Roberto, I.C. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems. Appl Biochem Biotechnol 176, 1596–1612 (2015). https://doi.org/10.1007/s12010-015-1664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1664-5

Keywords

Navigation