Skip to main content

Advertisement

Log in

Implication of Industrial Waste for Biomass and Lipid Production in Chlorella minutissima Under Autotrophic, Heterotrophic, and Mixotrophic Grown Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Following the diminishing hopes from the first and second generation biofuels, mainly due to the limitations of land availability, feed stock requirements, and complicated pre-treatments, third generation biofuels from microalgae are becoming a priority in the current scenario. The present study focuses on comparison and optimization of lipid accumulation efficiency in algal strain Chlorella minutissima grown under autotrophic, heterotrophic, and mixotrophic modes of nutrition, employing various carbon sources obtained from cheap industrial wastes such as glucose, acetate, and glycerol. Other pertinent factors such as the effect of various nitrogen sources, effect of salinity on the cell growth, and lipid accumulations in the algal cells were also studied. The results suggested that C. minutissima can grow efficiently under autotrophic, heterotrophic, and mixotrophic modes of nutrition. C. minutissima cells were capable of utilizing other non-popular carbon sources such as glycerol and acetate collected as waste products from different industries along with commonly used glucose. The maximum biomass concentration (8.9 g/L) and lipid content (36.19 %) were found in heterotrophic mode of nutrition. Our findings indicated that C. minutissima can efficiently utilize these cheaper carbon sources from industrial waste products for its growth and the production cost of various bioenergy sources can be reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. 35, 2245-2253.

  2. Oo, T.T., Weine Oo, N.N., Thu, M.K., & Oo, M.M. (2008). Optimization of oil-rich microalgae (Scenedesmus sp. and Chlorella sp.) culture for biodiesel research and development. The Third GMSARN International Conference. 35.

  3. Boyle, G. (2012). Renewable energy: power for a sustainable future (3rd ed.). USA: Oxford University Press.

    Google Scholar 

  4. Peterson, C. L., & Hustrulid, T. (1998). Carbon cycle for rapeseed oil biodiesel fuels. Biomass and Bioenergy, 14, 91–101.

    Article  CAS  Google Scholar 

  5. Carlsson, A.S., Van Beilen, J.B., Moller, R., Clayton, D. (2007). In: Bowles D, editor. Micro- and macro-algae: utility for industrial applications, outputs from the EPOBIO project. University of York. CPL Press, Newbury (UK).

  6. Schenk, M. P., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Resarch, 1, 20–43.

    Article  Google Scholar 

  7. Aquafuels: algae towards biofuels (2010). Available from: http://www.aquafuels.eu/project-info.html [accessed 23.04.2015].

  8. Miao, X., Wu, Q., & Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Applied Pyrolysis, 71, 855–863.

    Article  CAS  Google Scholar 

  9. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  10. Gouveia, L., (2011). Microalgae as a feedstock for biofuels. Springer Briefs in Microbiology. 1–68.

  11. Darzins, A., Pienkos, P., & Edye, L. (2010). Current status and potential for algal biofuels production. Bioindustry partners and NERL. Bioenergy Task, 39, 131.

    Google Scholar 

  12. Bozbas, K. (2008). Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable and Sustainable Energy Reviews, 12, 542–552.

    Article  CAS  Google Scholar 

  13. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  14. Lee, Y.K. (2003). Algal nutrition: heterotrophic carbon nutrition. In: Richmond A, Ed., Biotechnology and applied phycology. Handbook of microalgal culture. Blackwell Publishing, 116.

  15. Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalgae Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    Article  CAS  Google Scholar 

  16. Droop, M.R., (1974). Heterotrophy of carbon. In Stewart WDP, Ed., Algal physiology and biochemistry. University of California Press. 530–559.

  17. Martinez, F., & Orus, M. I. (1991). Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiology, 95, 1150–1155.

    Article  CAS  Google Scholar 

  18. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic grown conditions. Biotechnology Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  19. Xiong, W., Li, X. F., Xiang, J. Y., & Wu, Q. Y. (2008). High-density fermentation of microalgae Chlorella protothecoides in bioreactor for micro-biodiesel production. Applied Microbiology and Biotechnology, 78, 29–15.

    Article  CAS  Google Scholar 

  20. Heredia-Arrayo, T., Wei, W., & Hu, B. (2010). Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotehnology, 162, 1978–1995.

    Article  Google Scholar 

  21. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  22. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  23. Kong, W., Yang, H., Cao, Y., Song, H., Hua, S., & Xia, C. (2013). Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1), 62–69.

    CAS  Google Scholar 

  24. Barclay, B. (1984). Microalgae culture collection. Microalgal Technology Research Group (MTRG). SERI/SP-231-2486.

  25. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100, 833–838.

    Article  CAS  Google Scholar 

  26. Daniela, M. S., Raunel, T., John, K., & Alfredo, M. (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for Biofuels, 6(100), 1–12.

    Google Scholar 

  27. David, U. S., Xavier, F., Antoni, S. F., Raquel, B., Sergio, R., & Angel, V. (2015). Valorisation of biodiesel production wastes: anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol. Waste Management & Research, 33, 250–257.

    Article  Google Scholar 

  28. Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.

    Article  CAS  Google Scholar 

  29. DeMorais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

    Article  Google Scholar 

  30. Drora, K., Zvi, C., & Aharon, A. (1986). Optimal growth conditions for Isochrysis galbana. Biomass, 9, 37–48.

    Article  Google Scholar 

  31. Eriksen, N. T. (2008). The technology of microalgal culturing. Biotechnology Letters, 30, 1525–1536.

    Article  CAS  Google Scholar 

  32. Feinberg, D.A., (1984). Fuel options from microalgae with representative chemical compositions. SERI/TR-231-2427.

  33. Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36, 269–274.

    Article  CAS  Google Scholar 

  34. Grima, E. M., Fernandez, F. G. A., Camacho, F. G., Rubio, F. C., & Chisti, Y. (2000). Scale-up of tubular photobioreactors. Journal of Applied Phycology, 12, 355–68.

    Article  CAS  Google Scholar 

  35. Hanhua, H. K. G. (2006). Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters, 28, 987–992.

    Article  Google Scholar 

  36. Henderson, R. J., John, W. L., & John, R. S. (1988). Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry, 27(6), 1679–1683.

    Article  CAS  Google Scholar 

  37. Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253.

    Article  CAS  Google Scholar 

  38. Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4), 573–608.

    Article  Google Scholar 

  39. Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.

    Article  CAS  Google Scholar 

  40. Jianhua, F., Yanbin, C., Minxi, W., Weiliang, W., & Yuanguang, L. (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnology for Biofuels, 7, 1–14.

    Article  Google Scholar 

  41. Jiao, X., Ying-Fang, N., Tan, H., Wei-Dong, Y., Jie-Sheng, L., & Hong-Ye, L. (2015). Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering, 27, 1–9.

    Article  CAS  Google Scholar 

  42. Jun, C., Jia, F., Jing, S., Yun, H., Junhu, Z., & Kefa, C. (2014). Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication. Energy, 78, 9–15.

    Article  Google Scholar 

  43. Leathers, J., Celina, M., Chianelli, R., Thoma, S., Gupta, V., (2007). Systems analysis and futuristic designs of advanced biofuel factory, concepts. SANDIA Report, SAND, 6872.

  44. Lee, Y. K. (2001). Microalgal mass culture systems and methods: their limitation and potential. Journal of Applied Phycology, 13, 307–315.

    Article  Google Scholar 

  45. Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815–20.

    CAS  Google Scholar 

  46. Mahapatra, D. M., & Ramachandra, T. V. (2013). Algal biofuel: bountiful lipid from Chlorococcum sp. proliferating in municipal wastewater. Current Science, 105(1), 47–55.

    CAS  Google Scholar 

  47. Mata, M. T., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14, 217–323.

    Article  CAS  Google Scholar 

  48. Melinda, J. G., & Susan, T. L. H. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507.

    Article  Google Scholar 

  49. Michiki, H. (1995). Biological CO2 fixation and utilization project. Energy Conversion and Management, 36(6–9), 701–705.

    Article  CAS  Google Scholar 

  50. Minowa, R., Yokoyama, S., Kishimoto, M., & Okakurat, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 74(12), 1735–1738.

    Article  CAS  Google Scholar 

  51. Mohamad, A. S. (2013). Heterotophic growth of Ankistrodesmus sp. for lipid production using cassava starch hydrolysate as a carbon source. The International Journal of Biotechnology, 2(1), 42–51.

    Google Scholar 

  52. Moheimani, N.R., (2005). The culture of Coccolithophorid algae for carbon dioxide bioremediation. PhD thesis. Murdoch University.

  53. Moheimani, N.R., Borowitzka, M.A., (2006). The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. Journal of Applied Phycology, 18, 703–712.

  54. Momocha, N., Sachitra, K. R., Radha, P., Anil, K. S., Dolly, W. D., Chandragiri, S., & Rachapudi, B. N. P. (2012). Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springer Plus, 1, 1–33.

    Article  Google Scholar 

  55. Nagaraja, Y. P., Biradar, C., Manasa, K. S., & Venkatesh, H. S. (2014). Production of biofuel by using micro algae (Botryococcus braunii). International Journal of Current Microbiology and Applied Sciences, 3(4), 851–860.

    CAS  Google Scholar 

  56. Natrah, F., Yoso, V. F. M., Shari, V. M., Abas, F., & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19, 711–718.

    Article  CAS  Google Scholar 

  57. Negoro, M., Shioji, N., Miyamoto, K., & Miura, Y. (1991). Growth of microalgae in high CO2 gas and effects of SOX and NOX. Applied Biochemistry and Biotechnology—Part A Enzyme Engineering and Biotechnology, 28–29, 877–886.

    Article  Google Scholar 

  58. Peng, W., Wu, Q., Tu, P., & Zhao, N. (2001). Pyrolitic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80, 1–7.

    Article  CAS  Google Scholar 

  59. Poisson, L., Devos, M., Pencreach, G., & Ergan, F. (2002). Benefits and current developments of polyunsaturated fatty acids from microalgae lipids. OCL—Oleagineux Corps Gras Lipides, 9(2-3), 92–95.

    Article  CAS  Google Scholar 

  60. Rajiv, C. D. G., & Kalita, M. C. (2011). Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. Journal of Algal Biomass Utilization, 2, 42–49.

    Google Scholar 

  61. Raymond, K., Indah, R., & Muhammad, Z. (2014). Production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method. The Scientific World Journal, 9, 231361.

    Google Scholar 

  62. Renaud, S. M., Thinh, L. V., & Parry, D. L. (1997). The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170, 147–59.

    Article  Google Scholar 

  63. Richmond, A., (2004). Handbook of microalgal culture: biotechnology and applied. Phycology. Blackwell Science Ltd.

  64. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–12.

    Article  CAS  Google Scholar 

  65. Saddam, H. A., Talal, Y., & Raed, A. A. (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7, 1829–1851.

    Article  Google Scholar 

  66. Sancho, M. E. M., Castillo, J. M. J., & El, Y. F. (1999). Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Process Biochemistry, 34(8), 811–818.

    Article  Google Scholar 

  67. Sawayama, S., Minowa, T., & Yokoyama, S. Y. (1999). Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 17(1), 33–39.

    Article  CAS  Google Scholar 

  68. Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67–73.

    Article  CAS  Google Scholar 

  69. Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20, 341–345.

    CAS  Google Scholar 

  70. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  Google Scholar 

  71. Thomas, W. H., Seibert, D. L. R., Alden, M., Eldridge, P., & Neori, A. (1983). Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures II. Dunaliella primolecta and Tetraselmis suecica experiments. Biomass, 5, 211–225.

    Article  Google Scholar 

  72. Thomas, W.H., Tornabene, T.G., Weissman, J. (1984). Screening for lipid yielding microalgae: activities for 1983. SERI/STR-231-2207.

  73. Tri, P., Mujizat, K., & Vicky, K. (2013). Fatty acid composition of three diatom species Skeletonema costatum, Thalassiosira sp. and Chaetoceros gracilis. International Journal of Environment and Bioenergy, 6(1), 28–43.

    Google Scholar 

  74. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028.

    Article  CAS  Google Scholar 

  75. Wu, Y. H., Yang, J., Hu, H. Y., & Yu, Y. (2013). Lipid-rich bioalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecological Engineering, 60, 155–159.

    Article  Google Scholar 

  76. Yan, L., Schenk, P.M., (2011). Selection of cultured microalgae for producing omega-3 bio-lipid oil; report for Queensland Sea Scallop Trading Ltd. The University of Queensland, Queensland, Australia. 36.

  77. Zhu, C. J., & Lee, Y. K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189–194.

    Article  Google Scholar 

Download references

Acknowledgment

The authors sincerely acknowledge the Microbial Biotechnology Laboratory, University Institute of Engineering and Technology, M.D. University, Rohtak, Haryana, India for providing the laboratory facility for this research study.

Ethical Statement

The authors confirm that the present manuscript complies with the ethical rules applicable for this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafiul Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, K.K., Kumar, S., Dixit, D. et al. Implication of Industrial Waste for Biomass and Lipid Production in Chlorella minutissima Under Autotrophic, Heterotrophic, and Mixotrophic Grown Conditions. Appl Biochem Biotechnol 176, 1581–1595 (2015). https://doi.org/10.1007/s12010-015-1663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1663-6

Keywords

Navigation