Skip to main content
Log in

Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) was produced by Bacillus mycoides DFC 1, isolated from garden soil. Antimicrobial (AM) films of PHB were prepared by incorporating vanillin (4-hydroxy-3-methoxybenzaldehyde) from 10 to 200 μg/g of PHB. The films were assessed for antimicrobial activity against foodborne pathogens and spoilage bacteria comprising of Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Staphylococcus aureus and fungi such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus parasiticus, Aspergillus ochraceus, Penicillium viridicatum, and Penicillium clavigerum. The minimum concentration of vanillin required to exhibit antimicrobial activity was ≥80 μg/g PHB for bacteria and ≥50 μg/g PHB for fungi. The PHB films with and without vanillin were studied for mechanical and thermal properties such as tensile strength, Young’s modulus, percentage elongation to break, melting temperature, and heat of fusion. The thermal stability of the films was studied using thermogravimetric analysis. The release kinetics of vanillin into food matrices was also checked using food stimulants. The study is intended to find applications for PHB films containing vanillin to enhance the shelf life of foods in the form of biodegradable wrapper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rehm, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376, 15–33.

    Article  CAS  Google Scholar 

  2. Verlinden, R. A. J., Hill, D. J., Kenward, M. A., Williams, C. D., & Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology, 102, 1437–1449.

    Article  CAS  Google Scholar 

  3. Savenkova, L., Gercberga, Z., Nikolaeva, V., Dzene, A., Bibers, I., & Kalnin, M. (2000). Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry, 35, 537–579.

    Article  Google Scholar 

  4. Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R, S]-3-hydroxy butyrate)—morphology and properties. European Polymer Journal, 49, 3630–3641.

    Article  CAS  Google Scholar 

  5. Bittmann, B., Bouza, R., Barral, L., Diez, J., & Ramirez, C. (2013). Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polymer Composites, 34(7), 1033–1040.

    Article  CAS  Google Scholar 

  6. Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97(9), 1822–1828.

    Article  CAS  Google Scholar 

  7. Brasava, M. S., & Dukalska, L. (2006). Impact of biodegradable PHB packaging composite materials on dairy product quality. Proceedings of the Latvia University of Agriculture, 16(311), 79–87.

    Google Scholar 

  8. EC, 2009. Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Official Journal of the European Union L 135/3.

  9. Gutierrez, L., Sanchez, C., Batlle, R., López, P., & Nerin, C. (2009). New antimicrobial active package for bakery products. Trends in Food Science and Technology, 20(2), 92–99.

    Article  CAS  Google Scholar 

  10. Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA-PHB-limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255–270.

    Article  CAS  Google Scholar 

  11. Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379–1388.

    Article  CAS  Google Scholar 

  12. Sangsuwan, J., Rattanapanone, N., & Rachtanapun, P. (2008). Effects of vanillin and plasticizer on properties of chitosan-methyl cellulose based film. Postharvest Biology and Technology, 49, 403–410.

    Article  CAS  Google Scholar 

  13. Fitzgerald, D. J., Stratford, M., Gasson, M. J., Ueckert, J., Bos, A., & Narbad, A. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of Applied Microbiology, 97, 104–113.

    Article  CAS  Google Scholar 

  14. Karathanos, V. T., Mourtzinos, I., Yannakopoulou, K., & Andrikopoulos, N. K. (2007). Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with [beta]-cyclodextrin. Food Chemistry, 101(2), 652–658.

    Article  CAS  Google Scholar 

  15. Sangsuwan, J., Rattanapanone, N., & Rachtanapun, P. (2008). Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biology and Technology, 49, 403–410.

    Article  CAS  Google Scholar 

  16. Sangsuwan, J., Rattanapanone, N., & Pongsirikul, I. (2014). Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake. International Journal of Food Science and Technology, 1–7.

  17. Stroescu, M., Stoica-Guzun, A., Isopencu, G., Jinga, S. I., Parvulescu, O., Dobre, T., & Vasilescu, M. (2015). Chitosan-vanillin composites with antimicrobial properties. Food Hydrocolloid, 48, 62–71.

    Article  CAS  Google Scholar 

  18. Narayanan, A., & Ramana, K. V. (2012). Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. Biotech, 3, 2,287–296.

    Google Scholar 

  19. EC. (1997). Commission directive 97/48/EC of 29 July 1997 amending for the second time council directive 82/711/EEC laying down the basic rules necessary for testing migration of the constituents of plastic materials and articles intended to come into contact with foodstuffs (97/48/EC). Official Journal of the European Communities, L.222, 210–215.

    Google Scholar 

  20. Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical and biodegradation properties. Advances in Polymer Technology, 30(2), 67–79.

    Article  Google Scholar 

  21. Matamoros, L. B., Argaiz, A., & Lopez, M. A. (1999). Individual and combined effects of vanillin and potassium sorbate on Penicillium digitatum, Penicillium glabrum and Penicillium italicum growth. Journal of Food Protection, 62, 540–542.

    Google Scholar 

  22. Prindle, R. F., & Wright, E. S. (1977). Phenolic compounds. In S. S. Block (Ed.), Disinfection, sterilization and preservation (p. 1049). Philadelphia: Lea & Febiger.

    Google Scholar 

  23. Rupasinghe, H. P. V., Boulter-Bitzer, J., Ahn, T., & Odumeru, J. A. (2006). Vanillin inhibits pathogenic and spoilage micro-organisms in vitro and aerobic microbial growth in fresh-cut apples. Food Research International, 39, 575–580.

    Article  CAS  Google Scholar 

  24. Moon, K. D., Delaquis, P., Toivonen, P., & Stanich, K. (2006). Effect of vanillin on the fate of Listeria monocytogenes and Escherichia coli O157:H7 in a model apple juice medium and in apple juice. Food Microbiology, 23, 169–174.

    Article  CAS  Google Scholar 

  25. Marin, L., Stoica, I., Mares, M., Dinu, V., Bogdan, C. S., & Barboiu, M. (2013). Antifungal vanillin imino-chitosan biodynameric films. Journal of Materials Chemistry B, 1, 3353–3358.

    Article  CAS  Google Scholar 

  26. Gabriel, A. A., Karen, J., & Pineda, F. (2014). Influences of vanillin and licorice root extract supplementations on the decimal reduction times of Escherichia coli O157:H7 in mildly heated young coconut liquid endosperm. Food Control, 38, 136–141.

    Article  CAS  Google Scholar 

  27. Arrieta, M. P., Castro-López, M. M., Rayón, E., Losada, L. F. B., Lopez-Vilarino, J. M., Lopez, J., & Gonzalez-Rodrguez, M. V. (2014). Plasticized poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food packaging applications. Journal of Agricultural and Food Chemistry, 62, 10170–10180.

    Article  CAS  Google Scholar 

  28. Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133, 641–649.

    Article  CAS  Google Scholar 

  29. Erceg, M., Kovacic, T., & Klaric, I. (2005). Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polymer Degradation and Stability, 90(2), 313–318.

    Article  CAS  Google Scholar 

  30. Sindhu, R., Ammu, B., Binod, P., Sreelatha, K., Deepthi, K., Ramachandran, B., Soccol, C. R., & Pandey, A. (2011). Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Archives of Biology and Technology, 54(4), 783–794.

    Article  CAS  Google Scholar 

  31. Ioannis, M., Konteles, S., Kalogeropoulos, N., & Karathanos, V. T. (2009). Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chemistry, 114, 791–797.

    Article  Google Scholar 

  32. Stroescu, M., Stoica, G. A., & Mihaela, I. J. (2013). Vanillin release from poly(vinyl alcohol)-bacterial cellulose mono and multilayer films. Journal of Food Engineering., 114, 153–157.

    Article  CAS  Google Scholar 

  33. Castro-Lopez, M. M., Lopez-Vilarino, J. M., & Gonzalez-Rodrguez, M. V. (2014). Analytical determination of flavonoids aimed to analysis of natural samples and active packaging applications. Food Chemistry, 150, 119–127.

    Article  Google Scholar 

  34. Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science and Emerging Technologies, 10, 222–227.

    Article  CAS  Google Scholar 

  35. Kirwin, C. J., & Galvin, J. B. (1993). In G. D. Clayton & F. E. Clayton (Eds.), Patty’s industrial hygiene and toxicology, vol. 2: part A (4th ed., p. 445). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janifer Raj Xavier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R., Babusha, S.T., George, J. et al. Material Properties and Antimicrobial Activity of Polyhydroxybutyrate (PHB) Films Incorporated with Vanillin. Appl Biochem Biotechnol 176, 1498–1510 (2015). https://doi.org/10.1007/s12010-015-1660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1660-9

Keywords

Navigation