Skip to main content
Log in

Interactions Between Autotrophic and Heterotrophic Strains Improve CO2 Fixing Efficiency of Non-photosynthetic Microbial Communities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Five autotrophic strains isolated from non-photosynthetic microbial communities (NPMCs), which were screened from oceans with high CO2 fixing capability, were identified as Ochrobactrum sp. WH-2, Stenotrophomonas sp. WH-11, Ochrobactrum sp. WH-13, Castellaniella sp. WH-14, and Sinomicrobium oceani WH-15. The CO2 fixation pathways of all these strains were Calvin-Benson-Bassham pathway. These strains could metabolize multifarious organic compounds, which allowed switching them to autotrophic culture after enrichment in heterotrophic culture. The central composite response surface method indicated that these strains possessed many interactive effects, which increased the CO2 fixing efficiency of a combined community composed of these strains by 56 %, when compared with that of the single strain. Furthermore, another combined community composed of these autotrophic strains and NPMC had richer interactive relationships, with CO2 fixing efficiency being 894 % higher than that of the single strain and 148 % higher than the theoretical sum of the CO2 fixing efficiency of each of its microbial components. The interaction between strictly heterotrophic bacteria in NPMC and isolated autotrophic strains played a crucial role in improving the CO2 fixing efficiency, which not only eliminated self-restraint of organic compounds generated during the growth of autotrophic bacteria but also promoted its autotrophic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lopez, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., & Munoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Applied Microbiology and Biotechnology, 97, 2277–2303.

    Article  CAS  Google Scholar 

  2. Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology, 77, 1925–1936.

    Article  CAS  Google Scholar 

  3. Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296.

    Article  CAS  Google Scholar 

  4. Acien, F., González-López, C. V., Fernández, J. M., & Molina, E. (2012). Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Applied Microbiology and Biotechnology, 96, 577–586.

    Article  Google Scholar 

  5. Hopkinson, B. M., Dupontb, C. L., Allenb, A. E., & Morel, F. M. M. (2011). Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National academy of Sciences of the United States of America, 108, 3830–3837.

    Article  CAS  Google Scholar 

  6. ElMekawy, A., Hegab, H. M., Vanbroekhoven, K., & Pant, D. (2014). Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renewable and Sustainable Energy Reviews, 39, 617–627.

    Article  CAS  Google Scholar 

  7. Wu, X. H., Ge, T. D., Yuan, H. Z., Li, B. Z., Zhu, H. H., Zhou, P., Sui, F. G., O’Donnell, A. G., & Wu, J. S. (2014). Changes in bacterial CO2 fixation with depth in agricultural soils. Applied Microbiology and Biotechnology, 98, 2309–2319.

    Article  CAS  Google Scholar 

  8. Madigan, M. T., Martinko, J. M., Stahl, D., & Clark, D. P. (2010). Brock biology of microorganisms (13th ed.). New York: Pearson Higher Education.

    Google Scholar 

  9. Herbert, R. A., Ranchou-Peyruse, A., Duran, R., Guyoneaud, R., & Schwabe, S. (2005). Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa. Environmental Microbiology, 7, 1260–1268.

    Article  CAS  Google Scholar 

  10. Li, B., Irvin, S., & Baker, K. (2007). The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater. Journal of Environmental Engineering and Science, 6, 651–663.

    Article  CAS  Google Scholar 

  11. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V., & Cambon-Bonavita, M. A. (2002). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 52, 1317–1323.

    Article  CAS  Google Scholar 

  12. Hu, J., Wang, L., Zhang, S., Fu, X., & Le, Y. (2010). Matching different inorganic compounds as mixture of electron donors to improve CO2 fixation by non-photosynthetic microbial community without hydrogen. Environmental Science and Technology, 44, 6364–6370.

    Article  CAS  Google Scholar 

  13. Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7, 568–577.

    Article  CAS  Google Scholar 

  14. Hu, J., Wang, L., Zhang, S., Wang, Y., Jin, F., Fu, X., & Li, H. (2014). Universally improving effect of mixed electron donors on the CO2 fixing efficiency of non-photosynthetic microbial communities from marine environments. Journal of Environmental Sciences, 26, 1709–1716.

    Article  CAS  Google Scholar 

  15. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  16. Tolli, J., & King, G. M. (2005). Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Applied and Environmental Microbiology, 71, 8411–8418.

    Article  CAS  Google Scholar 

  17. Kong, W., Dolhi, J. M., Chiuchiolo, A., Priscu, J., & Morgan-Kiss, R. M. (2012). Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology, 82, 491–500.

    Article  CAS  Google Scholar 

  18. Takai, K., Campbell, B. J., Cary, S. C., Suzuki, M., Oida, H., Nunoura, T., Hirayama, H., Nakagawa, S., Suzuki, Y., Inagaki, F., & Horikoshi, K. (2005). Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Applied and Environmental Microbiology, 71, 7310–7320.

    Article  CAS  Google Scholar 

  19. Steinberg, L. M., & Regan, J. M. (2009). mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 75, 4435–4442.

    Article  CAS  Google Scholar 

  20. Romesburg, H. C. (2004). Cluster analysis for researchers. Raleigh: Lulu Press.

    Google Scholar 

  21. Maxwell, D., Pryor, F., & Smith, C. (2002). Cluster analysis in cross-sectional research. World Cultures, 13, 22–38.

    Google Scholar 

  22. Thauer, R. K. (2007). A fifth pathway of carbon fixation. Science, 14, 1732–1733.

    Article  Google Scholar 

  23. Tabita, F. R., Hanson, T. E., Li, H., Satagopan, S., Singh, J., & Chan, S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews, 71, 576–599.

    Article  CAS  Google Scholar 

  24. Morris, B. E. L., Henneberger, R., Huber, H., & Moissl-Eichinger, C. (2013). Microbial syntrophy: interaction for the common good. FEMS Microbiology Ecology, 37, 384–406.

    Article  CAS  Google Scholar 

  25. Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., & Singh, B. K. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology, 15, 2395–2417.

    Article  CAS  Google Scholar 

  26. Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262–280.

    CAS  Google Scholar 

  27. Hu, J., Wang, L., Zhang, S., Wang, Y., & Xi, X. (2011). Inhibitory effect of organic carbon on CO2 fixing by non-photosynthetic microbial community isolated from the ocean. Bioresource Technology, 102, 7147–7153.

    Article  CAS  Google Scholar 

  28. Nishihara, H., Igarashi, Y., Kodama, T., & Nakajima, T. (1993). Production and properties of glycogen in the marine obligate chemolithoautotroph, Hydrogenovibrio marinus. Journal of Fermentation and Bioengineering, 75, 414–416.

    Article  CAS  Google Scholar 

  29. Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Review of Microbiology, 48, 311–343.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China, No. 21177093 and No. 21307093; National High Technology Research and Development Program of China, No. 2012AA050101; Research Fund for the Doctoral Program of Higher Education of China, No. 20130072110025; China Postdoctoral Science Foundation, No. 2013M531220 and No. 2014T70430; Scientific Research Projects of Shanghai Science and Technology Committee, No. 14540500600; and Program for Professor of Special Appointment at Shanghai (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, L., Zhang, S. et al. Interactions Between Autotrophic and Heterotrophic Strains Improve CO2 Fixing Efficiency of Non-photosynthetic Microbial Communities. Appl Biochem Biotechnol 176, 1459–1471 (2015). https://doi.org/10.1007/s12010-015-1657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1657-4

Keywords

Navigation