Skip to main content
Log in

Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylose, mannose, and galactose (xmg) recovery from empty fruit bunches using acetic acid-assisted hydrothermal (AAH) fractionation method was investigated. Acetic acid has been demonstrated to be effective in xmg recovery in comparison with the liquid hot-water (LHW) fractionation. The maximum xmg recovery yield (50.7 %) from the empty fruit bunch (EFB) was obtained using AAH fractionation at optimum conditions (6.9 wt.% acetic acid at 170 °C and for 18 min); whereas, only 16.2 % of xmg recovery was obtained from the LHW fractionation at the same reaction conditions (170 °C and 18 min). Releasing out the glucose from EFB was kept at low level (<1.0 %) through all tested conditions and consequently negligible 5-HMF and formic acid were analyzed in the hydrolyzate. The production of furfural was also resulted with extremely low level (1.0 g/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass–biofuel supply chain optimization. Bioresource Technology, 156, 256–266.

    Article  CAS  Google Scholar 

  2. Kajaste, R. (2014). Chemicals from biomass-managing greenhouse gas emissions in biorefinery production chains—a review. Journal of Cleaner Production, 75, 1–10.

    Article  CAS  Google Scholar 

  3. Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  4. Garrote, G., Dominguez, H., & Parajo, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57, 191–202.

    Article  CAS  Google Scholar 

  5. Aita, G. M., & Kim, M. (2010). Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. ACS Symposium Series, 1058, 117–145.

    Article  CAS  Google Scholar 

  6. Felix, E., & Tilley, D. R. (2009). Integrated energy, environmental and financial analysis of ethanol production from cellulosic switch grass. Energy, 34, 410–436.

    Article  CAS  Google Scholar 

  7. Mosier, N., Wyman, C., Dale, B., Elander, R., Holtzapple, M., Lee, Y. Y., & Ladisch, M. (2005). Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  8. Tan, S. S., Li, D. Y., Jiang, Z. Q., Zhu, Y. P., Shi, B., & Li, L. T. (2008). Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritime xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresource Technology, 99, 200–204.

    Article  CAS  Google Scholar 

  9. Vazquez, M. J., Garrote, G., Alonso, J. L., Dominguez, H., & Parajo, J. C. (2005). Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresource Technology, 96, 889–896.

    Article  CAS  Google Scholar 

  10. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schol, H. A. (2007). Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  11. Lee, J. M., Shi, J., Venditti, R. A., & Jameel, H. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Bioresource Technology, 100, 6434–6441.

    Article  CAS  Google Scholar 

  12. Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. M. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126–131.

    Article  CAS  Google Scholar 

  13. Zhao, X., & Liu, D. (2013). Kinetic modeling and mechanisms of acid-catalyzed delignification of sugarcane bagasse by aqueous acetic acid. Bioenergy Research, 6, 436–447.

    Article  Google Scholar 

  14. Qin, L., Liu, Z. H., Li, B. Z., Dale, B. E., & Yuan, Y. J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology, 112, 319–326.

    Article  CAS  Google Scholar 

  15. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2010). Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Applied Microbiology and Biotechnology, 86, 509–516.

    Article  CAS  Google Scholar 

  16. Jin, F. M., Zhou, Z. Y., Moriya, T., Kishida, H., Higashijima, H., & Enomoto, H. (2005). Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environmental Science and Technology, 39, 1893–1902.

    Article  CAS  Google Scholar 

  17. Jin, F. M., Zhou, Z. Y., Kishita, A., Enomoto, H., Kishida, H., & Moriya, T. (2007). A new hydrothermal process for producing acetic acid from biomass waste. Chemical Engineering Research and Design, 85(2), 201–206.

    Article  CAS  Google Scholar 

  18. Zabihi, S., Alinia, R., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 105, 288–297.

    Article  Google Scholar 

  19. Abad, S., Alonso, J. L., Santos, V., & Parajó, J. C. (1997). Furfural from wood in catalyzed acetic acid media: a mathematical assessment. Bioresource Technology, 62, 115–122.

    Article  CAS  Google Scholar 

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass, NREL. TP-510-42618.

  21. Sluiter, A., Hames, B., Ruiz, R., & Scarlata, C. (2008). Determination of sugar, byproducts, and degradation products in liquid fraction process samples, NREL. TP-510-42623.

  22. Shamsudin, S., Shah, U. K. M., Zainudin, H., Aziz, S. A., Kamal, S. M. M., Shirai, Y., & Hassan, M. A. (2012). Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass Bioenergy, 36, 280–288.

    Article  CAS  Google Scholar 

  23. Hong, J. Y., Kim, Y. S., & Oh, K. K. (2013). Fractionation and delignification of empty fruit bunches with low reaction severity for high sugar recovery. Bioresource Technology, 146, 176–183.

    Article  CAS  Google Scholar 

  24. Lee, J. Y., Ryu, H. J., & Oh, K. K. (2013). Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates. Bioresource Technology, 132, 84–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was conducted by the research fund of Dankook University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.Y., Um, B.H. & Oh, K.K. Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts. Appl Biochem Biotechnol 176, 1445–1458 (2015). https://doi.org/10.1007/s12010-015-1656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1656-5

Keywords

Navigation