Skip to main content

Advertisement

Log in

A Nucleic Acid Biosensor for Detection of Hepatitis C Virus Genotype 1a Using Poly(l-Glutamic Acid)-Modified Electrode

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An electrochemical nucleic acid biosensor based on label-free DNA detection method was prepared for the first time by using electropolymerized poly(l-glutamic acid)-modified pencil graphite electrode (PGA/PGE) for detection of hepatitis C virus genotype 1a (HCV1a). Inosine-substituted 20-mer probes related to the HCV1a were immobilized onto PGA/PGE surface by covalent linking with the formation of amide bonds. Square wave voltammetry (SWV) was used to monitor the oxidation signal of guanine in the hybridization events, which gave an oxidation peak at +1.05 V. An increase in the oxidation signal of guanine was showed by hybridization of the probe with the complementary DNA. Noncomplementary oligonucleotides were also used to investigate the selectivity of the biosensor. The proposed nucleic acid biosensor was linear in the range of 50 nM to 1.0 μM, exhibiting a limit of detection of 40.6 nM. Finally, single-stranded synthetic PCR product analogues of HCV1a were performed in optimal condition. This PGA-modified nucleic acid sensor is cost-effective and disposable, and besides, it has superior electrocatalytic effect on the oxidation of guanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, Y., Zhang, K., & Ma, H. (2009). Electrochemical DNA biosensors based on gold nanoparticles / cysteamine/ poly (glutamic acid) modified electrode. American Journal of Biomedical Sciences, 1(2), 115–125.

    Article  CAS  Google Scholar 

  2. Qiu, L., Zhou, H., Wu, Z., Shen, G., & Yu, R. (2014). Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism. New Journal of Chemistry, 38(10), 4711–4715.

    Article  CAS  Google Scholar 

  3. Benoit, V., Steel, A., Torres, M., Yu, Y.-Y., Yang, H., & Cooper, J. (2001). Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays. Analytical Chemistry, 73(11), 2412–2420.

    Article  CAS  Google Scholar 

  4. Barlet, V., Cohard, M., Thelu, M. A., Chaix, M. J., Baccard, C., Zarski, J. P., & Seigneurin, J. M. (1994). Quantitative detection of hepatitis B virus DNA in serum using chemiluminescence: comparison with radioactive solution hybridization assay. Journal of Virological Methods, 49(2), 141–151.

    Article  CAS  Google Scholar 

  5. Kick, A., Bönsch, M., Katzschner, B., Voigt, J., Herr, A., Brabetz, W., Jung, M., Sonntag, F., Klotzbach, U., Danz, N., Howitz, S., & Mertig, M. (2010). DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy. Biosensors & Bioelectronics, 26(4), 1543–1547.

    Article  CAS  Google Scholar 

  6. Patolsky, F., Lichtenstein, A., & Willner, I. (2000). Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. Journal of the American Chemical Society, 122(2), 418–419.

    Article  CAS  Google Scholar 

  7. Dos Santos Riccardi, C., Kranz, C., Kowalik, J., Yamanaka, H., Mizaikoff, B., & Josowicz, M. (2008). Label-free DNA detection of hepatitis C virus based on modified conducting polypyrrole films at microelectrodes and atomic force microscopy tip-integrated electrodes. Analytical Chemistry, 80(1), 237–245.

    Article  Google Scholar 

  8. Lucarelli, F., Marrazza, G., Turner, A. P., & Mascini, M. (2004). Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosensors and Bioelectronics, 19(6), 515–530.

    Article  CAS  Google Scholar 

  9. Chung, D.-J., Kim, K.-C., & Choi, S.-H. (2011). Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection. Applied Surface Science, 257(22), 9390–9396.

    Article  CAS  Google Scholar 

  10. Shakoori, Z., Salimian, S., Kharrazi, S., Adabi, M., & Saber, R. (2015). Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Analytical and Bioanalytical Chemistry, 407, 455–461.

    Article  CAS  Google Scholar 

  11. Kashish, Soni, D. K., Mishra, S. K., Prakash, R., & Dubey, S. K. (2015). Label-free impedimetric detection of Listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe. Journal of Biotechnology, 200, 70–76.

    Article  CAS  Google Scholar 

  12. Santos, D. P., Zanoni, M. V. B., Bergamini, M. F., Chiorcea-Paquim, A.-M., Diculescu, V. C., & Oliveira Brett, A.-M. (2008). Poly(glutamic acid) nanofibre modified glassy carbon electrode: characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochimica Acta, 53(11), 3991–4000.

    Article  CAS  Google Scholar 

  13. Zhang, Y., Luo, L., Ding, Y., Liu, X., & Qian, Z. (2010). A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchimica Acta, 171(1–2), 133–138.

    Article  CAS  Google Scholar 

  14. Lin, Y., Liu, K., Liu, C., Yin, L., Kang, Q., Li, L., & Li, B. (2014). Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochimica Acta, 133, 492–500.

    Article  CAS  Google Scholar 

  15. Ashraf-Uz-Zaman, M., Begum, B. A., Asad, H. B., Moutoshi, S. S., & Nasiruddin, M. (2010). Biochemical parameters in common viral hepatitis. Journal of Medicine, 11, 42–45.

  16. Tahaei, S. M. E., Mohebbi, S. R., & Zali, M. R. (2012). Enteric hepatitis viruses. Gastroenterology and Hepatology From Bed to Bench, 5, 7–15.

    Google Scholar 

  17. World Health Organization (1999). Global surveillance and control of hepatitis C: Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. Journal of Viral Hepatitis, 6(1), 35–47. doi:10.1046/j.1365-2893.1999.6120139.x.

  18. Consensus Statement (1999). EASL international consensus conference on hepatitis C. Journal of Hepatology, 30(5), 956–961. doi:10.1016/S0168-8278(99)80154-8.

  19. Erensoy, S. (2001). Diagnosis of hepatitis C virus (HCV) infection and laboratory monitoring of its therapy. Journal of Clinical Virology, 21(3), 271–281.

    Article  CAS  Google Scholar 

  20. Zhao, H., & Ju, H. (2004). Biosensor for hepatitis B virus DNA PCR product and electrochemical study of the interaction of Di(2,2′-bipyridine)osmium(III) with DNA. Electroanalysis, 16(19), 1642–1646.

    Article  CAS  Google Scholar 

  21. Mandong, G., Yanqing, L., Hongxia, G., Xiaoqin, W., & Lifang, F. (2007). Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry, 70(2), 245–249.

    Article  Google Scholar 

  22. Hejazi, M. S., Pournaghi-Azar, M. H., & Ahour, F. (2010). Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Analytical Biochemistry, 399(1), 118–124.

    Article  CAS  Google Scholar 

  23. Pournaghi-Azar, M. H., Ahour, F., & Hejazi, M. S. (2009). Differential pulse voltammetric detection of hepatitis C virus 1a oligonucleotide chain by a label-free electrochemical DNA hybridization biosensor using consensus sequence of hepatitis C virus 1a probe on the pencil graphite electrode. Electroanalysis, 21(16), 1822–1828.

    Article  CAS  Google Scholar 

  24. Kara, P., Cavdar, S., Meric, B., Erensoy, S., & Ozsoz, M. (2007). Electrochemical probe DNA design in PCR amplicon sequence for the optimum detection of microbiological diseases. Bioelectrochemistry (Amsterdam, Netherlands), 71(2), 204–210.

    Article  CAS  Google Scholar 

  25. Wang, J., & Kawde, A.-N. (2002). Amplified label-free electrical detection of DNA hybridization. The Analyst, 127(3), 383–386.

    Article  CAS  Google Scholar 

  26. Yu, A. M., & Chen, H. Y. (1997). Electrocatalytic oxidation of hydrazine at the poly(glutamic acid) chemically modified electrode and its amperometric determination. Analytical Letters, 30(3), 599–607.

    Article  CAS  Google Scholar 

  27. Jiang, C., Yang, T., Jiao, K., & Gao, H. (2008). A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochimica Acta, 53(6), 2917–2924.

    Article  CAS  Google Scholar 

  28. Ma, W., & Sun, D. (2007). Electrocatalytical oxidation of dopamine and epinephrine at poly(L-threonine) modified electrode. Acta Physico-Chimica Sinica, 23(3), 332–336.

    CAS  Google Scholar 

  29. Liu, X., Luo, L., Ding, Y., & Ye, D. (2011). Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Bioelectrochemistry (Amsterdam, Netherlands), 82(1), 38–45.

    Article  CAS  Google Scholar 

  30. Watterson, J. H., Piunno, P. A. E., Wust, C. C., & Krull, U. J. (2000). Effects of oligonucleotide immobilization density on selectivity of quantitative transduction of hybridization of immobilized DNA. Langmuir, 16(11), 4984–4992.

    Article  CAS  Google Scholar 

  31. Kara, P., Cavusoglu, C., Cavdar, S., & Ozsoz, M. (2009). Direct electrochemical genosensing for multiple point mutation detection of Mycobacterium tuberculosis during the development of rifampin resistance. Biosensors and Bioelectronics, 24(6), 1796–1800.

    Article  CAS  Google Scholar 

  32. Wu, D., Yin, B.-C., & Ye, B.-C. (2011). A label-free electrochemical DNA sensor based on exonuclease III-aided target recycling strategy for sequence-specific detection of femtomolar DNA. Biosensors and Bioelectronics, 28(1), 232–238.

    Article  CAS  Google Scholar 

  33. Ricci, F., Bonham, A. J., Mason, A. C., Reich, N. O., & Plaxco, K. W. (2009). Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Analytical Chemistry, 81(4), 1608–1614.

    Article  CAS  Google Scholar 

  34. Farabullini, F., Lucarelli, F., Palchetti, I., Marrazza, G., & Mascini, M. (2007). Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosensors and Bioelectronics, 22(7), 1544–1549.

    Article  CAS  Google Scholar 

  35. Li, X. M., Ju, H. Q., Du, L. P., & Zhang, S. S. (2007). A nucleic acid biosensor for the detection of a short sequence related to the hepatitis B virus using bis(benzimidazole)cadmium(II) dinitrate as an electrochemical indicator. Journal of Inorganic Biochemistry, 101(8), 1165–1171.

    Article  CAS  Google Scholar 

  36. Abad-Valle, P., Fernández-Abedul, M. T., & Costa-García, A. (2007). DNA single-base mismatch study with an electrochemical enzymatic genosensor. Biosensors and Bioelectronics, 22(8), 1642–1650.

    Article  CAS  Google Scholar 

  37. Zhang, Q. D., March, G., Noel, V., Piro, B., Reisberg, S., Tran, L. D., & Pham, M. C. (2012). Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: application to Mycobacterium tuberculosis. Biosensors and Bioelectronics, 32(1), 163–168.

    Article  Google Scholar 

  38. Lai, R. Y., Seferos, D. S., Heeger, A. J., Bazan, G. C., & Plaxco, K. W. (2006). Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir, 22(25), 10796–10800.

    Article  CAS  Google Scholar 

  39. Pournaghi-Azar, M. H., Ahour, F., & Hejazi, M. S. (2010). Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Analytical and Bioanalytical Chemistry, 397(8), 3581–3587.

    Article  CAS  Google Scholar 

  40. Lucarelli, F., Marrazza, G., Palchetti, I., Cesaretti, S., & Mascini, M. (2002). Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E. Analytica Chimica Acta, 469(1), 93–99.

    Article  CAS  Google Scholar 

  41. Huang, K.-J., Niu, D.-J., Sun, J.-Y., Han, C.-H., Wu, Z.-W., Li, Y.-L., & Xiong, X.-Q. (2011). Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids and Surfaces B: Biointerfaces, 82(2), 543–549.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Donmez.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donmez, S., Arslan, F. & Arslan, H. A Nucleic Acid Biosensor for Detection of Hepatitis C Virus Genotype 1a Using Poly(l-Glutamic Acid)-Modified Electrode. Appl Biochem Biotechnol 176, 1431–1444 (2015). https://doi.org/10.1007/s12010-015-1655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1655-6

Keywords

Navigation