Skip to main content
Log in

In Silico Identification for α-Amino-ε-Caprolactam Racemases by Using Information on the Structure and Function Relationship

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In silico identification for enzymes having desired functions is attractive because there is a possibility that numerous desirable enzymes have been deposited in databases. In this study, α-amino-ε-caprolactam (ACL) racemases were searched from the NCBI protein database. Four hundred thirteen fold-type I pyridoxal 5′-phosphate-dependent enzymes which are considered to contain sequences of ACL racemase were firstly obtained by submitting the sequence of ACL racemase from Achromobacter obae to the database. By identifying Lys241 as a key amino acid residue, 13 candidates for ACL racemase were selected. Then, putative ACL racemase genes were synthesized as codon-optimized sequences for expression in Escherichia coli. They were subcloned and expressed in E. coli BL21 and underwent His-tag purification. ACL and amino acid amide racemizing activities were detected among ten of the candidates. The locus tags Oant_4493, Smed_5339, and CSE45_2055 derived from Ochrobactrum anthropi ATCC49188, Sinorhizobium medicae WSM 419, and Citreicella sp. SE45, respectively, showed higher racemization activity against d- and l-ACLs rather than that of ACL racemase from A. obae. Our results demonstrate that the newly discovered ACL racemases were unique from ACL racemase from A. obae and might be useful for applications in dynamic kinetic resolution for d- or l-amino acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gröger, H., & Asano, Y. (2012). Introduction-principles and historical landmarks of enzyme catalysis in organic synthesis. In K. Drauz, H. Gröger, & O. May (Eds.), Enzyme catalysis in organic synthesis (Vol. 2, pp. 3–42). Weinheim: Wiley-VCH Verlag & Co. KGaA.

  2. Asano, Y. (2002). Overview of screening for new microbial catalysts and their uses in organic synthesis-selection and optimization of biocatalysts. Journal of Biotechnology, 94(1), 65–72.

    Article  CAS  Google Scholar 

  3. Asano, Y. (2010). Tools for Enzyme Discovery -Industrial enzymes, biocatalysis and enzyme evolution. In H. B. Richard, E. D. Julian, & D. Arnold (Eds.), Manual of Industrial Microbiology and Biotechnology (pp. 441–452). USA: ASM press.

    Google Scholar 

  4. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485, 185–194.

    Article  CAS  Google Scholar 

  5. Gerlt, J. A., & Babbitt, P. C. (2000). Can sequence determine function? Genome Biology, 1(5), 0005.1–005.10.

    Article  Google Scholar 

  6. Lee, D., Redfern, O., & Oregon, C. (2007). Prediction protein function from sequence and structure. Nature Reviews Molecular Cell Biology, 8, 995–1005.

    Article  CAS  Google Scholar 

  7. Davids, T., Schmidt, M., Böttcher, D., & Bornscheuer, U. T. (2013). Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology, 17, 215–220.

  8. Höhne, M., Schätzle, S., Jochens, H., Robins, K., & Bornscheuer, U. T. (2010). Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 6, 807–813.

  9. Loewenstein, Y., Raimondo, D., Redfern, O. C., Watson, J., Frishman, D., Linial, M., Orengo, C., Thornton, J., & Tramontano, A. (2009). Protein function annotation by homology-based inference. Genome Biology, 10(2), 207.1–207.8.

    Article  Google Scholar 

  10. Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., Bergh, T. V. D., Joosten, H. J., Berglund, P., Höhne, M., & Bornscheuer, U. T. (2015). Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnology Advances. doi:10.1016/j.biotechadv.2014.12.012.

  11. Fukumura, T. (1977). Bacterial racemization of α-amino-ε-caprolactam. Agricultural and Biology Chemistry, 41(8), 1321–1325.

    Article  CAS  Google Scholar 

  12. Fukumura, T. (1977). Conversion of D- and DL-α-amino-ε-caprolactam into L-lysine using both yeast cells and bacterial cells. Agricultural and Biological Chemistry, 41(8), 1327–1330.

    Article  CAS  Google Scholar 

  13. Fukumura, T. (1977). Partial purification and some properties of α-amino-ε-caprolactam-racemizing enzyme from Achromobacter obae. Agricultural and Biological Chemistry, 41(8), 1509–1510.

    Article  CAS  Google Scholar 

  14. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1982). Production and stabilization of α-amino-ε-caprolactam racemase from Achromobacter obae. Bulletin of the Institute for Chemical Research, 60(5–6), 342–346.

    CAS  Google Scholar 

  15. Ahmed, S. A., Esaki, N., & Soda, K. (1982). Purification and properties of α-amino-ε-caprolactam racemase from Achromobacter obae. FEBS Letters, 150(2), 370–374.

    Article  CAS  Google Scholar 

  16. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1983). Racemization of α-amino-δ-valerolactam catalyzed by α-amino-ε-caprolactam racemase from Achromobacter obae. Agricultural and Biological Chemistry, 47(5), 1149–1150.

    Article  CAS  Google Scholar 

  17. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1983). Properties of α-amino-ε-caprolactam racemase from Achromobacter obae. Agricultural and Biological Chemistry, 47(8), 1887–1893.

    Article  CAS  Google Scholar 

  18. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1984). L-α-Amino-β-thio-ε-caprolactam, a new sulfur-containing substrate for α-amino-ε-caprolactam racemase. FEBS Letters, 174(1), 76–79.

    Article  CAS  Google Scholar 

  19. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1985). Mechanism of inactivation of α-amino-ε-caprolactam racemase by α-amino-δ-valerolactam. Agricultural and Biological Chemistry, 49(10), 2991–2997.

    Article  CAS  Google Scholar 

  20. Fukumura, T. (1976). Screening, classification and distribution of L-α-amino-ε-caprolactam-hydrolysing yeasts. Agricultural and Biological Chemistry, 40(9), 1687–1693.

    Article  CAS  Google Scholar 

  21. Fukumura, T. (1976). Hydrolysis of L-α-amino-ε-caprolactam by yeasts. Agricultural and Biological Chemistry, 40(9), 1695–1698.

    Article  CAS  Google Scholar 

  22. Asano, Y., & Yamaguchi, S. (2005). Discovery of amino acid amides as new substrates for α-amino-ε-caprolactam racemase from Achromobacter obae. Journal of Molecular Catalysis B: Enzymatic, 36, 22–29.

    Article  CAS  Google Scholar 

  23. Asano, Y., & Yamaguchi, S. (2005). Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and α-amino-ε-caprolactam racemase. Journal of the American Chemical Society, 127, 7696–7697.

    Article  CAS  Google Scholar 

  24. Yamaguchi, S., Komeda, H., & Asano, Y. (2007). New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of α-amino-ε-caprolactam racemase. Applied and Environmental Microbiology, 73(16), 5370–5373.

    Article  CAS  Google Scholar 

  25. Okazaki, S., Suzuki, A., Mizushima, T., Kawano, T., Komeda, H., Asano, Y., & Yamane, T. (2009). The novel structure of a pyridoxal 5’-phosphate-dependent fold-type I racemase, α-amino-ε-caprolactam racemase from Achromobacter obae. Biochemistry, 48(5), 941–950.

    Article  CAS  Google Scholar 

  26. Ahmed, S. A., Esaki, N., Tanaka, H., & Soda, K. (1986). Mechanism of α-amino-ε-caprolactam racemase reaction. Biochemistry, 25(2), 385–388.

    Article  CAS  Google Scholar 

  27. Yoshimura, T., & Goto, M. (2008). D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS Journal, 275(14), 3527–3537.

    Article  CAS  Google Scholar 

  28. Nakano, S., & Asano, Y. (2015). Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software. Scientific Reports, 5, 1–10.

    Article  Google Scholar 

  29. Pellegata, R., Pinza, M., & Pifferi, G. (1978). An improved synthesis of γ-, δ-, and ε-lactams. Synthesis, 8, 614–616.

    Article  Google Scholar 

  30. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  31. McNicholas, S., Potterton, E., Wilson, K. S., & Noble, E. M. (2011). Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallographica Section D: Biological Crystallography, 67, 386–394.

    Article  CAS  Google Scholar 

  32. Ito, T., Maekawa, M., Hayashi, S., Goto, M., Hemmi, H., & Yoshimura, T. (2013). Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids, 44, 1073–1084.

    Article  CAS  Google Scholar 

  33. Eliot, A. C., & Kirsch, J. F. (2004). Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annual Review of Biochemistry, 73, 383–415.

    Article  CAS  Google Scholar 

  34. Boesten, W.H.J., Raemakers-Franken, P.C., Sonke, T., Euverink, G.J.W. & Grijpstra, P. (2003). Polypeptides having α-H-α-amino acid amide racemase activity and nucleic acids encoding the same. WO International Patent Application, WO2003106691.

  35. Yasukawa, K., & Asano, Y. (2012). Enzymatic synthesis of chiral phenylalanine derivatives by a dynamic kinetic resolution of corresponding amide and nitrile substrates with a multi-enzyme system. Advanced Synthesis & Catalysis, 354(17), 3327–3332.

    Article  CAS  Google Scholar 

  36. Maier, A., Riedlinger, J., Fiedler, H.-P., & Hampp, R. (2004). Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycological Progress, 3(2), 129–136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/099/2551) and Japan Student Services Organization (JASSO). The authors greatly appreciated Asst. Prof. Ken-ichi Fuhshuku for the preparation of the chiral ACLs and enantiomerically pure amino acid amides.

Conflict of Interest

None declared.

Ethical Approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aran H-Kittikun or Yasuhisa Asano.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payoungkiattikun, W., Okazaki, S., Nakano, S. et al. In Silico Identification for α-Amino-ε-Caprolactam Racemases by Using Information on the Structure and Function Relationship. Appl Biochem Biotechnol 176, 1303–1314 (2015). https://doi.org/10.1007/s12010-015-1647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1647-6

Keywords

Navigation