Skip to main content
Log in

Effects of CO2 Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This communication reports an experimental investigation of integrated CO2 bio-conversion, wastewater treatment, and biomass production by microalgae cultivation. In this regard, the effects of CO2 concentrations on mixotrophic growth kinetics of a microalgae strain (Nannochloropsis oculata) are conducted in a semi-batch photobioreactor. The concentration of CO2 in the feed stream is varied from 4 to 12 mol% by adjusting CO2-to-air ratio. The variation of pH of the synthetic wastewater culture media and nutrient uptake by the microalgae are also monitored. The experimental evaluation shows that 8 % CO2 gives the highest growth rate of N. oculata with a productivity of 0.088 g L−1 day−1. Under the studied conditions, the pH value of the culture media between 5.5 and 6.5 is favorable for the growth of N. oculata in mixotrophic condition. Among the nutrients available in the culture media, percentage of ammonia removal is found to be the highest (98.9 %) as compared that of other compounds such as nitrate (88.2 %) and phosphate (18.9 %). The thermochemical characteristics of the cultivated microalgae are assessed by thermogravimetric analysis in presence of air. The produced microalgae is thermally stable up to 200 °C. Following that, the microalgae biomass is sharply decomposed within 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable & Sustainable Energy Reviews, 27, 622–653.

    Article  CAS  Google Scholar 

  2. Huang, G., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38–46.

    Article  CAS  Google Scholar 

  3. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  4. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  5. Rasoul-Amini, S., Montazeri-Najafabady, N., Mobasher, M. A., Hoseini-Alhashemi, S., & Ghasemi, Y. (2011). Chlorella sp.: a new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Applied Energy, 88, 3354–3356.

    Article  CAS  Google Scholar 

  6. Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50, 324–329.

    Article  CAS  Google Scholar 

  7. Brilman, W., Garcia Alba, L., & Veneman, R. (2013). Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass and Bioenergy, 53, 39–47.

    Article  CAS  Google Scholar 

  8. de Bashan, L., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 110, 1611–1627.

    Article  Google Scholar 

  9. Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels : a critical review of issues, problems and the way forward. Biotechnology Advances, 30, 673–690.

    Article  CAS  Google Scholar 

  10. Chojnacka, K., & Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 5, 461–465.

    Article  Google Scholar 

  11. Lee, Y. (2001). Microalgal mass culture systems and methods : their limitation and potential. Journal of Applied Phycology, 13, 307–315.

    Article  Google Scholar 

  12. Skreiberg, A., Skreiberg, Ø., Sandquist, J., & Sørum, L. (2011). TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel, 90, 2182–2197.

    Article  CAS  Google Scholar 

  13. López-González, D., Fernandez-Lopez, M., Valverde, J. L., & Sanchez-Silva, L. (2014). Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 114, 227–237.

    Article  Google Scholar 

  14. Khoo, H. H., Koh, C. Y., Shaik, M. S., & Sharratt, P. N. (2013). Bioenergy co-products derived from microalgae biomass via thermochemical conversion–life cycle energy balances and CO2 emissions. Bioresource Technology, 143, 298–307.

    Article  CAS  Google Scholar 

  15. Das, P., Lei, W., Aziz, S. S., & Obbard, J. P. (2011). Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883–7.

    Article  CAS  Google Scholar 

  16. Abreu, A. P., Fernandes, B., Vicente, A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–6. 55

  17. Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102, 3071–6.

    Article  CAS  Google Scholar 

  18. Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75–81.

    Article  CAS  Google Scholar 

  19. Andruleviciute, V., Makareviciene, V., Skorupskaite, V., & Gumbyte, M. (2013). Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. Journal of Applied Phycology, 26, 83–90.

    Article  Google Scholar 

  20. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28, 371–380.

    Article  CAS  Google Scholar 

  21. Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–12.

    Article  CAS  Google Scholar 

  22. Miller, A., Espie, G., & Canvin, D. (1990). Physiological aspects of CO2 and HCO3-transport by cyanobacteria: a review. Canadian Journal of Botany, 68, 1291–1302.

    Article  CAS  Google Scholar 

  23. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22, 1490–506.

    Article  CAS  Google Scholar 

  24. Becker, E. (1994). Microalgae: Biotechnology and Microbiology.

  25. Larsdotter, K. (2006). Wastewater treatment with microalgae-a literature review. Vatten, 62, 31–38.

    CAS  Google Scholar 

  26. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable & Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  27. Sanchez-Silva, L., López-González, D., Garcia-Minguillan, A. M., & Valverde, J. L. (2013). Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresource Technology, 130, 321–31.

    Article  CAS  Google Scholar 

  28. López, R., Fernández, C., & Gómez, X. (2013). Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion. Journal of Thermal Analysis and Calorimetry, 114, 295–305.

    Article  Google Scholar 

  29. Tahmasebi, A., Kassim, M. A., Yu, J., & Bhattacharya, S. (2013). Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresource Technology, 150, 15–27.

    Article  CAS  Google Scholar 

  30. Valverde, J. L. (2014). Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 114, 227–237.

    Article  Google Scholar 

  31. Wu, K., Liu, J., Wu, Y., Chen, Y., Li, Q., Xiao, X., & Yang, M. (2014). Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresource Technology, 163, 18–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) is acknowledged for funding this work through project No. KACST ARP# A-T-32-62(KACST ARP# T-K-11-0431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh A. Razzak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzak, S.A., Ilyas, M., Ali, S.A.M. et al. Effects of CO2 Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata . Appl Biochem Biotechnol 176, 1290–1302 (2015). https://doi.org/10.1007/s12010-015-1646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1646-7

Keywords

Navigation