Skip to main content
Log in

Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, two phenol-degrading bacterial strains, designated as PI1 and PI2, were isolated from activated sludge for the production of indigoids from indole. According to the 16S ribosomal RNA (rRNA) gene sequence analysis, strains PI1 and PI2 were identified as Pseudomonas sp. and Acinetobacter sp., respectively. Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) was applied to analyze the metabolites during the biotransformation of indole by the phenol-degrading strains. The results indicated that both strains could catalyze the formation of four indigoids with the same prominent molecular ion (M-H) peak at m/z 261.067 and molecular formula of C16H10N2O2, including indigo and a purple product, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one. Isatin and 7-hydroxyindole were detected as the intermediates. Thus, the possible pathways for the production of indigoids from indole were proposed. Subsequently, the optimal conditions for the production of indigo from indole were determined using response surface methodology, and 11.82 ± 0.30 and 17.19 ± 0.49 mg/L indigo were produced by strains PI1 and PI2, respectively. The present study should provide potential candidates for microbial production of indigoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, J. H., & Lee, J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews, 34, 426–444.

    Article  CAS  Google Scholar 

  2. Lee, J., Jayaraman, A., & Wood, T. K. (2007). Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiology, 7, 42.

    Article  Google Scholar 

  3. Lee, J. H., Kim, Y. G., Baek, K. H., Cho, M. H., & Lee, J. (2015). The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens. Environmental Microbiology, 17, 1234-1244.

  4. Ma, Q., Qu, Y. Y., Zhang, Z. J., Li, P. P., & Tang, H. Z. (2015). Genome sequence of an efficient indole-degrading bacterium, Cupriavidus sp. strain IDO, with potential polyhydroxyalkanoate production applications. Genome Announcements, 3, e00102–15.

  5. Huxtable, R. J. (2001). The mutability of blue. Molecular Interventions, 1, 141–144.

    CAS  Google Scholar 

  6. Gaboriaud-Kolar, N., Nam, S., & Skaltsounis, A. L. (2014). A colorful history—the evolution of indigoids. Progress in the Chemistry of Organic Natural Products, 99, 69–145.

    Article  Google Scholar 

  7. O’Connor, K. E., Dobsom, A. D., & Hartmans, S. (1997). Indigo formation by microorganisms expressing styrene monooxygenase activity. Applied and Environmental Microbiology, 63, 4287–4291.

    Google Scholar 

  8. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., & Gibson, D. T. (1983). Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 222, 167–169.

    Article  CAS  Google Scholar 

  9. Choi, H. S., Kim, J. K., Cho, E. H., Kim, Y. C., Kim, J. I., & Kim, S. W. (2003). A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochemical and Biophysical Research Communications, 306, 930–936.

    Article  CAS  Google Scholar 

  10. Gillam, E. M., Notley, L. M., Cai, H., De Voss, J. J., & Guengerich, F. P. (2000). Oxidation of indole by cytochrome P450 enzymes. Biochemistry, 39, 13817–13824.

    Article  CAS  Google Scholar 

  11. Kim, J. Y., Kim, J. K., Lee, S. O., Kim, C. K., & Lee, K. (2005). Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Letters in Applied Microbiology, 41, 163–168.

    Article  CAS  Google Scholar 

  12. Qu, Y. Y., Ma, Q., Zhang, X. W., Zhou, H., Li, X. L., & Zhou, J. T. (2012). Optimization of indigo production by a newly isolated Pseudomonas sp. QM. Journal of Basic Microbiology, 52, 687–694.

    Article  CAS  Google Scholar 

  13. Ma, Q., Qu, Y. Y., Tang, H. Z., Yu, H., Ma, F., Shi, S. N., Zhang, X. W., Zhou, H., Zhou, J. T., & Xu, P. (2012). Genome sequence of a novel indigo-producing strain, Pseudomonas monteilii QM. Journal of Bacteriology, 194, 4459–4460.

    Article  CAS  Google Scholar 

  14. Qu, Y. Y., Shi, S. N., Zhou, H., Ma, Q., Li, X. L., Zhang, X. W., & Zhou, J. T. (2012). Characterization of a novel phenol hydroxylase in indoles biotransformation from a strain Arthrobacter sp. W1. PloS One, 7, e44313.

    Article  CAS  Google Scholar 

  15. Qu, Y. Y., Pi, W. Q., Ma, F., Zhou, J. T., & Zhang, X. W. (2010). Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresource Technology, 101, 4527–4532.

    Article  CAS  Google Scholar 

  16. Shi, S. N., Ma, F., Sun, T. H., Li, A., Zhou, J. T., & Qu, Y. Y. (2013). Biotransformation of indole to indigo by the whole cells of phenol hydroxylase engineered strain in biphasic systems. Applied Biochemistry and Biotechnology, 169, 1088–1097.

    Article  CAS  Google Scholar 

  17. Zhang, X. W., Qu, Y. Y., Ma, Q., Kong, C. L., Zhou, H., Cao, X. Y., Shen, W. L., Shen, E., & Zhou, J. T. (2014). Production of indirubin from tryptophan by recombinant Escherichia coli containing naphthalene dioxygenase genes from Comamonas sp. MQ. Applied Biochemistry and Biotechnology, 172, 3194–3206.

    Article  CAS  Google Scholar 

  18. Eaton, R. W., & Chapman, P. J. (1995). Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. Journal of Bacteriology, 177, 6983–6988.

    CAS  Google Scholar 

  19. O’Connor, K. E., & Hartmans, S. (1998). Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnology Letters, 20, 219–223.

    Article  Google Scholar 

  20. Mercadal, J. P., Isaac, P., Siñeriz, F., & Ferrero, M. A. (2010). Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain. Journal of Basic Microbiology, 50, 290–293.

    Article  CAS  Google Scholar 

  21. Pathak, H., & Madamwar, D. (2010). Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Applied Biochemistry and Biotechnology, 160, 1616–1626.

    Article  CAS  Google Scholar 

  22. Doukyu, N., Nakano, T., Okuyama, Y., & Aono, R. (2002). Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Applied Microbiology and Biotechnology, 58, 543–546.

    Article  CAS  Google Scholar 

  23. Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International Journal of Systematic and Evolutionary Microbiology, 50, 1563–1589.

    Article  CAS  Google Scholar 

  24. Poblete-Castro, I., Becker, J., Dohnt, K., dos Santos, V. M., & Wittmann, C. (2012). Industrial biotechnology of Pseudomonas putida and related species. Applied Microbiology and Biotechnology, 93, 2270–2290.

    Article  Google Scholar 

  25. Zhang, X. W., Qu, Y. Y., Ma, Q., Zhou, H., Li, X. L., Kong, C. L., & Zhou, J. T. (2013). Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. MQ for indigoids production. Process Biochemistry, 48, 581–587.

    Article  CAS  Google Scholar 

  26. Qu, Y. Y., Zhang, X. W., Ma, Q., Ma, F., Zhang, Q., Li, X. L., Zhou, H., & Zhou, J. T. (2012). Biosynthesis of indigo by Comamonas sp. MQ. Biotechnology Letters, 34, 353–357.

    Article  CAS  Google Scholar 

  27. Qu, Y. Y., Xu, B. W., Zhang, X. W., Ma, Q., Zhou, H., Kong, C. L., Zhang, Z. J., & Zhou, J. T. (2013). Biotransformation of indole by whole cells of recombinant biphenyl dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase. Biochemical Engineering Journal, 72, 54–60.

    Article  CAS  Google Scholar 

  28. Meyer, A., Würsten, M., Schmid, A., Kohler, H. P., & Witholt, B. (2002). Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. The Journal of Biological Chemistry, 277, 34161–34167.

    Article  CAS  Google Scholar 

  29. McClay, K., Boss, C., Keresztes, I., & Steffan, R. J. (2005). Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Applied and Environmental Microbiology, 71, 5476–5483.

    Article  CAS  Google Scholar 

  30. Rui, L., Reardon, K. F., & Wood, T. K. (2005). Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Applied Microbiology and Biotechnology, 66, 422–429.

    Article  CAS  Google Scholar 

  31. Al-Khalid, T., & El-Naas, M. H. (2012). Aerobic biodegradation of phenols: a comprehensive review. Critical Reviews in Environmental Science and Technology, 42, 1631–1690.

    Article  CAS  Google Scholar 

  32. Loh, K. C., & Tan, C. P. (2000). Effect of additional carbon sources on biodegradation of phenol. Bulletin of Environmental Contamination and Toxicology, 64, 756–763.

    Article  CAS  Google Scholar 

  33. Khleifat, K. M. (2006). Biodegradation of phenol by Ewingella americana: effect of carbon starvation and some growth conditions. Process Biochemistry, 41, 2010–2016.

    Article  CAS  Google Scholar 

  34. Guengerich, F. P., Sorrells, J. L., Schmitt, S., Krauser, J. A., Aryal, P., & Meijer, L. (2004). Generation of new protein kinase inhibitors utilizing cytochrome P450 mutant enzymes for indigoid synthesis. Journal of Medicinal Chemistry, 47, 3236–3241.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21176040), the Program for New Century Excellent Talents in University (No. NCET-13-0077), and the Fundamental Research Funds for the Central Universities (No. DUT14YQ107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, X., Fan, J. et al. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2. Appl Biochem Biotechnol 176, 1263–1276 (2015). https://doi.org/10.1007/s12010-015-1644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1644-9

Keywords

Navigation