Skip to main content
Log in

Chemiluminescence Detection of Serine, Proline, Glycine, Asparagine, Leucine, and Histidine by Using Corresponding Aminoacyl-tRNA Synthetases as Recognition Elements

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of the concentration of free amino acids in biological samples is useful in clinical diagnostics. However, currently available methods are time consuming, potentially delaying diagnosis. Therefore, the development of more rapid analytical tools is needed. In this study, a chemiluminescence detection method for amino acids was developed, and the conditions for the enzyme reaction and assay were examined. For the recognition of each amino acid (here, serine, proline, glycine, asparagine, leucine, and histidine), the corresponding aminoacyl-tRNA synthetase (aaRS) was employed, and multiple enzymatic reactions were combined with a luminol chemiluminescence reaction. This method provided selective quantification from 1 to 20 μM for serine, proline, glycine, and leucine; 1 to 60 μM for asparagine; and 1 to 150 μM for histidine. This assay, which utilized aaRSs for the detection of amino acids, could be useful for simple and rapid analysis of amino acids in clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valerio, A., D’Antona, G., & Nisoli, E. (2011). Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging, 3, 464–478.

    CAS  Google Scholar 

  2. Ohara, H., Ichikawa, S., Matsumoto, H., Akiyama, M., Fujimoto, N., Kobayashi, T., & Tajima, S. (2010). Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. Journal of Dermatology, 37, 330–338.

    Article  CAS  Google Scholar 

  3. Bannai, M., Kawai, N., Nagao, K., Nakano, S., Matsuzawa, D., & Shimizu, E. (2011). Oral administration of glycine increases extracellular serotonin but not dopamine in the prefrontal cortex of rats. Psychiatry and Clinical Neurosciences, 65, 142–149.

    Article  CAS  Google Scholar 

  4. Yang, J.-H., Wada, A., Yoshida, K., Miyoshi, Y., Sayano, Y., Esaki, K., Kinoshita, M., Tomonaga, S., Azuma, N., Watanabe, M., Hamase, K., Zaitsu, K., Machida, T., Messing, A., Itohara, S., Hirabayashi, Y., & Furuya, S. (2010). Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an NMDA receptor co-agonist, in adult brain. Journal of Biological Chemistry, 285, 41380–41390.

    Article  CAS  Google Scholar 

  5. Koning, T. J., Snell, K., Duran, M., Berger, R., Poll-The, B.-T., & Surtees, R. (2003). L-serine in disease and development. Biochemical Journal, 371, 653–661.

    Article  Google Scholar 

  6. Lancha, A. H., Jr., Poortmans, J. R., & Pereira, L. O. (2009). The effect of 5 days of aspartate and asparagine supplementation on glucose transport activity in rat muscle. Cell Biochemistry and Function, 27, 552–557.

    Article  CAS  Google Scholar 

  7. Yan, S. L., Wu, S. T., Yin, M. C., Chen, H. T., & Chen, H. C. (2009). Protective effects from carnosine and histidine on acetaminophen-induced liver injury. Journal of Food Science, 74, H259–H265.

    Article  CAS  Google Scholar 

  8. Kugimiya, A., & Matsuzaki, E. (2014). Microfluidic analysis of serine levels using seryl-tRNA synthetase coupled with spectrophotometric detection. Applied Biochemistry and Biotechnology, 174, 2527–2536.

    Article  CAS  Google Scholar 

  9. Kugimiya, A., & Takamitsu, E. (2013). Spectrophotometric detection of histidine and lysine using combined enzymatic reactions. Materials Science and Engineering C, 33, 4867–4870.

    Article  CAS  Google Scholar 

  10. Kugimiya, A., Fukada, R., & Funamoto, D. (2013). A luminol chemiluminescence method for sensing histidine and lysine using enzyme reactions. Analytical Biochemistry, 443, 22–26.

    Article  CAS  Google Scholar 

  11. Sekine, S., Nureki, O., Dubois, D. Y., Bernier, S., Chenevert, R., Lapointe, J., Vassylyev, D. G., & Yokoyama, S. (2003). ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO Journal, 22, 676–688.

    Article  CAS  Google Scholar 

  12. Sekine, S., Shichiri, M., Bernier, S., Chênevert, R., Lapointe, J., & Yokoyama, S. (2006). Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure, 14, 1791–1799.

    Article  CAS  Google Scholar 

  13. Ohtsuki, T., Watanabe, Y., Takemoto, C., Kawai, G., Ueda, T., Kita, K., Kojima, S., Kaziro, Y., Nyborg, J., & Watanabe, K. (2001). An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. Journal of Biological Chemistry, 276, 21571–21577.

    Article  CAS  Google Scholar 

  14. Han, J. M., Jeong, S. J., Park, M. C., Kim, G., Kwon, N. H., Kim, H. K., Ha, S. H., Ryu, S. H., & Kim, S. (2012). Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell, 149, 410–424.

    Article  CAS  Google Scholar 

  15. Brustein, V. P., Cavalcanti, C. L. B., Melo, M. R., Jr., Correia, M. T. S., Beltrão, E. I. C., & Carvalho, L. B., Jr. (2012). Chemiluminescent detection of carbohydrates in the tumoral breast diseases. Applied Biochemistry and Biotechnology, 166, 268–275.

    Article  CAS  Google Scholar 

  16. Tan, H., & Song, Z. (2014). Human saliva-based quantitative monitoring of clarithromycin by flow injection chemiluminescence analysis: a pharmacokinetic study. Applied Biochemistry and Biotechnology, 172, 1320–1331.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimitsu Kugimiya.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental data 1

(PPTX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugimiya, A., Fukada, R. Chemiluminescence Detection of Serine, Proline, Glycine, Asparagine, Leucine, and Histidine by Using Corresponding Aminoacyl-tRNA Synthetases as Recognition Elements. Appl Biochem Biotechnol 176, 1195–1202 (2015). https://doi.org/10.1007/s12010-015-1639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1639-6

Keywords

Navigation