Skip to main content
Log in

Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Portwood, J.T. (1995). A commercial microbial enhanced oil recovery technology: evaluation of 322 projects, in Production Operation Symposium Society of Petroleum Engineers, Inc., Oklahoma City.

  2. Lazar, I., Petrisor, I.G., & Yen, T.F. (2007). Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 25, 1353–1366.

    Article  CAS  Google Scholar 

  3. Voordouw, G. (2011). Production-related petroleum microbiology: progress and prospects. Current Opinion in Biotechnology, 22, 401–405.

    Article  CAS  Google Scholar 

  4. Maudgalya, S., Knapp, R.M., & McInerney, M.J. (2007). Microbial enhanced oil recovery technologies: a review of the past, present and future, in SPE Production and Operations Symposium Society of Petroleum Engineers, Inc., Oklahoma City.

  5. Nazina, T.N., Grigo'yan, A.A., Feng, Q., Shestakova, N.M., Babich, T.L., Pavlova, N.K., Ivoilov, V.S., Ni, F., Wang, J., She, Y., Xiang, T., Mei, B., Luo, Z., & Ivanov, M.V. (2007). Microbial and production characteristics of the high-temperature kongdian petroleum reservoir revealed during field trial of biotechnology for enhancement of oil recovery. Microbiol., 76(3), 297–309.

    Article  CAS  Google Scholar 

  6. Belyaev, S.S., Borzenkov, I.A., Nazina, T.N., Rozanova, E.P., Glumov, I.F., Ibatullin, R.R., & Ivanov, M.V. (2004). Use of microorganisms in the biotechnology for the enhancement of oil recovery. Microbiol., 73(5), 590–598.

    Article  CAS  Google Scholar 

  7. Nagase, K., Zhang, S.T., Asami, H., Yazawa, N., Fujiwara,K., Enomoto,H., Hong, C.X., & Liang, C.X. (2001). Improvement of sweep efficiency by microbial EOR process in Fuyu oilfield, China, in SPE Asia Pacific Oil and Gas Conference Society of Petroleum Engineers, Inc., Jakarta, Indonesia.

  8. Zhaowei, H., Peihui, H., Jianjun, L., Jianfei, C., Xumou, D., Menghua, G., & Xinghong, C. (2008). The application of hydrocarbon-degrading bacteria in Daqing's low permeability, high paraffin content oil fields, in The 2008 SPE/DOE Improved Oil Recovery Symposium Society of Petroleum Engineers, Inc., Tulsa, Oklahoma.

  9. Ohno, K., Maezumi,S., Sarma,H.K., Enomoto, H., Hong, C., Zhou, S.C., & Fujiwara, K. (1999). Implementation and performance of a microbial enhanced oil recovery field pilot in Fuyu oilfield, China, in SPE Asia Pacific Oil and Gas Conference and Exhibition Society of Petroleum Engineers, Inc., Jakarta, Indonesia.

  10. Youssef, N., Elshahed, M.S., & McInerney, M.J. (2009). In Advances in Applied Microbiology,Vol. 66. In A.I. Laskin, S. Sariaslani, & G.M. Gadd (Eds.), Microbial processes in oil fields: culprits, problems, and opportunities (Vol. 66, pp. 141–251). Burlington: Elsevier, Inc.

    Google Scholar 

  11. Larsen, I. (2012). Annual Report. Copenhagen, Denmark: Energistyrelsen.

    Google Scholar 

  12. Kaster, K.M., Bonaunet, K., Berland, H., Kjeilen-Eilertsen, G., & Brakstad, O.G. (2009). Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leewenhoek, 96(4), 423–439.

    Article  Google Scholar 

  13. Kaster, K.M., Grigor'yan, A.A., Jenneman, G., & Voordouw, G. (2007). Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Applied and Environmental Microbiology, 75, 195–203.

    CAS  Google Scholar 

  14. Nilsen, R.K., Beeder, J., Thorstenson, T., & Torsvik, T. (1996). Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Applied and Environmental Microbiology, 62(5), 1793–1798.

    CAS  Google Scholar 

  15. Sunde, E., Lilebø, B.-L.P., & Thorstenson, T. (2004). H 2 S inhibition by nitrate injection on the Gullfaks field in NACE 2004 Corrosion Conference & Exposition NACE international. New Orleans.

    Google Scholar 

  16. Gittel, A.F., Sorensen, K.B., Skovhus, T.L., Ingvorsen, K., & Schramm, A. (2009). Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Applied and Environmental Microbiology, 75(22), 1098–5336.

    Article  Google Scholar 

  17. Bødtker, G., Lysnes, K., Torsvik, T., Bjørnestad, E.Ø., & Sunde, E. (2009). Microbial analysis of backflowed injection water from a nitrate-treated north sea oil reservoir. Journal of Industrial Microbiology, 36, 439–450.

    Article  Google Scholar 

  18. Juck, D., Charles, T., Whyte, L.G., & Greer, C.W. (2000). Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils two northern Canadian communities. FEMS Microbiology Ecology, 33, 241–249.

    Article  CAS  Google Scholar 

  19. Zheng, D., Alm, E.W., Stahl, D.A., & Raskin, L. (1996). Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Applied and Environmental Microbiology, 62(12), 4504–4513.

    CAS  Google Scholar 

  20. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    Article  CAS  Google Scholar 

  21. Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.

    Article  CAS  Google Scholar 

  22. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible. Applied and Environmental Microbiology, 72(7), 5069–5072.

    Article  CAS  Google Scholar 

  23. Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267.

    Article  CAS  Google Scholar 

  24. Maune, M.W., & Tanner, R.S. (2012). Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. International Journal of Systematic and Evolutionary Microbiology, 2012(62), 832–838.

    Article  Google Scholar 

  25. Menes, R.J., & Muxi, L. (2002). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. International Journal of Systematic and Evolutionary Microbiology, 2012(52), 157–164.

    Google Scholar 

  26. Rees, G.N., Patel, B.K.C., Grassia, G.S., & Sheehy, A.J. (1997). Anaerobaculum themoterrenum gen. nov., sp., nov., a novel, thermophilic bacterium which ferments citrate. International Journal of Systematic and Evolutionary Microbiology, 47(1), 150–154.

    CAS  Google Scholar 

  27. Dahle, H., & Birkeland, N.-K. (2006). Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. International Journal of Systematic and Evolutionary Microbiology, 56, 1539–1545.

    Article  CAS  Google Scholar 

  28. L'Haridon, S., Miroshnichenko, M.L., Hippe, H., Fardeau, M.L., Bonch-Osmolovskaya, E.A., Stackebrandt, E., & Jeanthon, C. (2002). Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. International Journal of Systematic and Evolutionary Microbiology, 52(5), 1715–1722.

    Article  Google Scholar 

  29. Lien, T., Madsen, M., Rainey, F.A., & Birkeland, N.-K. (1998). Petrotoga mobilis sp. nov., from a North Sea oil-production well. International Journal of Systematic and Evolutionary Microbiology, 48(3), 1007–1013.

    CAS  Google Scholar 

  30. Miranda-Tello, E., Fardeau, M.-L., Joulian, C., Magot, M., Thomas, P., Tholozan, J.-L., & Ollivier, B. (2007). Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. International Journal of Systematic and Evolutionary Microbiology, 57(1), 40–44.

    Article  CAS  Google Scholar 

  31. Miranda-Tello, E., Fardeau, M.-L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J.-L., Garcia, J.-L., & Ollivier, B. (2004). Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. International Journal of Systematic and Evolutionary Microbiology, 54(1), 169–174.

    Article  CAS  Google Scholar 

  32. de Acevedo, D.T., & McInerney, M.J. (1996). Emulsifying activity in thermophilic and extremely thermophilic microorganism. Journal of Industrial Microbiology, 16, 1–7.

    Article  Google Scholar 

  33. Afrapoli, M.S., Alipour, S., & Torsaeter, O. (2011). Fundamental Study of Pore Scale Mechanisms in Microbial Improved Oil Recovery Processes. Transport in Porous Media, 90, 949–964.

    Article  CAS  Google Scholar 

  34. Belay, N., Jung, K.-Y., Rajagopal, B.S., Kremer, J.D., & Daniels, L. (1990). Nitrate as a sole nitrogen source for Methanococcus thermolithotrophicus and Its effect on growth of several methanogenic bacteria. Current Microbiology, 21, 193–198.

    Article  CAS  Google Scholar 

  35. Takai, K., Inoue, A., & Horikoshi, K. (2002). Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. International Journal of Systematic and Evolutionary Microbiology, 52, 1089–1095.

    Article  CAS  Google Scholar 

  36. Purwasena, I.A., Sugai, Y., & Sasaki, K. (2009). Estimation of the potential of an oil-viscosity-reducing bacteria, Petrotoga sp., isolated from an oilfield for MEOR, in International Petroleum Technology Conference International Petroleum Technology Conference, Doha, Qatar. p. 1–8.

  37. Nazina, T.N., Sokolova, D.S., Grigor'yan, A.A., Xue, Y.F., Belyaev, S.S., & Ivanov, M.V. (2003). Producing of Oil-Releasing Compounds by Microorganisms from Daqing Oil Field, China. Microbiology, 72(2), 173–178.

Download references

Acknowledgements

This study has been carried as a part of the BioRec project supported by the Danish National Advanced Technology Foundation, Maersk Oil and DONG E&P. Maersk Oil is acknowledged for supplying the crude oil and produced water samples. The authors also wish to thank Son Huu Do from Maersk Oil for reviewing the manuscript. Nordic Sugar is acknowledged for providing the molasses for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Yunita Halim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, A.Y., Pedersen, D.S., Nielsen, S.M. et al. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery. Appl Biochem Biotechnol 176, 1012–1028 (2015). https://doi.org/10.1007/s12010-015-1626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1626-y

Keywords

Navigation