Skip to main content
Log in

Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D’ Cunha, G. B., Satyanarayan, V., & Nair, P. M. (1996). Stabilization of phenylalanine ammonia lyase containing Rhodotorula glutinis cells for the continuous synthesis of L-phenylalanine methyl ester. Enzyme and Microbial Technology, 19, 421–427.

    Article  Google Scholar 

  2. EI-Batal, A. I. (2002). Optimization of reaction conditions and stabilization of phenylalanine ammonia lyase-containing Rhodotorula glutinis cells during bioconversion of trans-cinnamic acid to L-phenylalanine. Acta Microbiologica Polonica, 51, 139–145.

    Google Scholar 

  3. Cui, J. D., & Li, Y. (2009). Optimal culture condition for the production of phenyalanine ammonia lyase from E. coli. Korean Journal Chemical Engineering, 26, 444–449.

    Article  CAS  Google Scholar 

  4. Zhu, L. B., Zhou, L., Cui, W. J., Liu, Z. M., & Zhou, Z. M. (2014). Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1. Biotechnology Reports, 3, 21–26.

    Article  Google Scholar 

  5. Watanabe, S. K., Hemandez-Velazco, G., Iturbe-Chinas, F., & Lopez-Mungia, A. (1992). Phenylalanine ammonia lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: application for phenylalanine and tyrosine deamination. World Journal Microbiology Biotechnology, 8, 406–411.

    Article  CAS  Google Scholar 

  6. Longo, N., Harding, C. O., Burton, B. K., Grange, D. K., Vockey, J., Wasserstein, M., Rice, G. M., Dorenbaun, A., Neuenburg, J. K., Musson, D. M., Gu, Z. H., & Sile, S. (2014). Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet, 384(9937), 37–44.

    Article  CAS  Google Scholar 

  7. Rossi, L., Pierigè, F., Carducci, C., Gabucci, C., Pascucci, T., Canonico, B., Bell, S. M., Fitzpatrick, P. A., Leuzzi, V., & Magnani, M. (2014). Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice. Journal of Control Release, 194, 37–44.

    Article  CAS  Google Scholar 

  8. Xue, Z. X., McCluskey, M., Cantera, K., Ren-Bassat, A., Sariaslani, F. S., & Huang, L. X. (2007). Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme. Enzyme and Microbial Technology, 42, 58–64.

    Article  CAS  Google Scholar 

  9. Cui, J. D., Jia, S. R., & Sun, A. Y. (2008). Influence of amino acids, organic solvents and surfactants for phenylalanine ammonia lyase activity in recombinant Escherichia. coli. Letters in Applied Microbiology, 46, 631–635.

    Article  CAS  Google Scholar 

  10. Rees, D. G., & Jones, D. H. (1996). Stability of L-phenylalanine ammonia lyase in aqueous solution and as the solid state in air and organic solvents. Enzyme and Microbial Technology, 19, 282–288.

    Article  CAS  Google Scholar 

  11. Orndorff, S. A., Costantino, N., & Stewart, D. (1988). Strain improvement of Rhodotorula graminis for production of a novel L-phenylalanine ammonia-lyase. Applied and Environment Microbiology, 54, 996–1002.

    CAS  Google Scholar 

  12. Galvis, M., Barbosa, C. J., Ortiz, C., Torres, R., & Fernandez-Lafuente, R. (2012). Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 47, 2373–2378.

    Article  CAS  Google Scholar 

  13. Cui, J. D., Qiu, J. Q., Fan, X. W., Jia, S. R., & Tan, Z. L. (2014). Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Critical Reviews in Biotechnology, 34(3), 258–268.

    Article  CAS  Google Scholar 

  14. Rodrigues, R. C., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Advanced Synthesis & Catalysis, 353, 2216–2238.

    Article  CAS  Google Scholar 

  15. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353, 2885–2904.

    Article  CAS  Google Scholar 

  16. Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45, 405–418.

    Article  CAS  Google Scholar 

  17. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307.

    Article  CAS  Google Scholar 

  18. Ateş, S., & Doğan, N. S. (2010). Properties of immobilized phenylalanine ammonia lyase and Investigation of its use for the prediagnosis of phenylketonuria. Turkish Journal of Biochemistry, 35, 58–62.

    Google Scholar 

  19. Cui, J. D., Zhang, S., & Sun, L. M. (2012). Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine. Applied Biochemistry and Biotechology, 167, 835–840.

    Article  CAS  Google Scholar 

  20. Cui, J. D., Cui, L. L., Zhang, S. P., Zhang, Y. F., Su, Z. G., & Ma, G. H. (2014). Hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase from Rhodotorula glutinis. PLoS ONE, 9(5), e97221.

    Article  Google Scholar 

  21. Patwardhan, S. V. (2011). Biomimetic and bioinspired silica: recent developments and applications. Chemical Communication, 47, 7567–7582.

    Article  CAS  Google Scholar 

  22. Luan, P. P., Jiang, Y. J., Zhang, S. P., Gao, J., Su, Z. G., Ma, G. H., & Zhang, Y. F. (2014). Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization. Journal of Bioscience and Bioengineering, 118, 575–582.

    Article  CAS  Google Scholar 

  23. Kristensen, J. B., Meyer, R. L., Poulsen, C. H., Kragh, K. M., Besenbacher, F., & Laursen, B. S. (2010). Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chemistry, 12, 387–394.

    Article  CAS  Google Scholar 

  24. Forsyth, C., Yip, T. W. S., & Patwardhan, S. V. (2013). CO2 sequestration by enzyme immobilized onto bioinspired silica. Chemical Communication, 49, 3191–3193.

    Article  CAS  Google Scholar 

  25. Zhang, S. H., Jiang, Z. Y., Zhang, W. Y., Wang, X. L., & Shi, J. F. (2015). Polymer–inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization. Biochemical Engineering Journal, 93, 281–288.

    Article  CAS  Google Scholar 

  26. Sun, Q. Y., Jiang, Y. J., Jiang, Z. Y., Zhang, L., Sun, X. H., & Li, J. (2009). Green and efficient conversion of CO2 to methanol by biomimetic co-immobilization of three dehydrogenases in protamine-templated titania. Industrial and Engineering Chemistry Research, 48, 4210–4215.

    Article  CAS  Google Scholar 

  27. Rodrigues, R. C., Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernandez-Lafuente, R. (2014). Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Advances, 4, 38350–38374.

    Article  CAS  Google Scholar 

  28. Zheng, J., Chen, Y., Yang, L., Li, M., & Zhang, J. (2014). Preparation of cross-linked enzyme aggregates of trehalose synthase via co-aggregation with polyethyleneimine. Applied Biochemistry and Biotechnology, 174, 2067–2078.

    Article  CAS  Google Scholar 

  29. Zhang, S., & Cui, J. D. (2012). Enhancement of phenylalanine ammonia lyase production from Rhodotorula mucilaginosa by optimization of culture conditions in batch and fed-batch. Biotechnology and Biotechnological Equipment, 26, 3418–3423.

    Article  CAS  Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  31. Luckarift, H. R., Spain, J. C., Naik, R. R., & Stone, M. O. (2004). Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 22, 211–213.

    Article  CAS  Google Scholar 

  32. Lai, J. K., Chuang, T. H., Jan, J. S., & Wang, S. S. (2010). Efficient and stable enzyme immobilization in a block copolypeptide vesicle-templated biomimetic silica support. Colloids and Surfaces B-Biointerfaces, 80, 51–58.

    Article  CAS  Google Scholar 

  33. Cui, J. D., Li, L. L., & Bian, H. J. (2013). Immobilization of cross-linked phenylalanine ammonia lyase aggregates in microporous silica gel. PLOS ONE, 8(11), e80581.

    Article  Google Scholar 

  34. Cui, J. D., Sun, L. M., & Zhang, S. (2013). A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin. Applied Biochemistry and Biotechnology, 2013(170), 1827–1837.

    Article  Google Scholar 

  35. Wilson, L., Ferńandez-Lorente, G., Ferńandez-Lafuente, R., Illanes, A., Guiśan, J. M., & Palomo, J. M. (2006). CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 39, 750–755.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was partially supported by the National Natural Science Foundation of China (project no. 21072041). Dr. J.D. Cui also thanks the supports from the Natural Science Foundation of Hebei Province, China (project no. B2014208054) and the Foundation of Hebei University of Science and Technology (project no. SW10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Liang, L., Han, C. et al. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica. Appl Biochem Biotechnol 176, 999–1011 (2015). https://doi.org/10.1007/s12010-015-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1624-0

Keywords

Navigation