Skip to main content
Log in

Predictor–Response Analysis of Fiber Optic Enzymatic Biosensors Constructed with Nonmodified E. coli BL21 (DE3) pGELAF+ Sensing 1,2-Dichloroethane

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosensor technology can lack methods to iteratively validate system outputs (i.e., signals) concomitantly with the development of mathematical models. We evaluated a nonmodified fiber optic enzymatic biosensor (FOEB—Escherichia coli BL21 (DE3) pGELAF+) sensing dichloroethane with a predictor–response statistical form. The linear regression technique applied with MATLAB functions correlated FOEB parameters to sensing responses that could be used to identify system characteristics and interactions. A FOEB specific metric (i.e. normalized sensitivity) is shown to be significant as a mixed sensing correlation metric suggesting that similar development parameters could be related to engineering design paradigms for biosensor (or whole cell biosensor) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

h :

hypothesis test result

kstat:

test statistic of Lilliefor’s test

ks2stat:

test statistic of the two-sample Kolmogorov–Smirnov test

critval:

critical value of the test statistic for Lilliefor’s test

p :

test specific p value

W :

sum of the Ansari–Bradley ranks for the sample

W*:

approximate normal statistic for the Ansari–Bradley test

X i :

regressors

X 1 :

day of use after construction

X 2 :

immobilized matrix size

X 3 :

optode sensitivity

X 4 :

change of analyte concentration in the measurement environment

X 5 :

response time

βi :

regression coefficients

y i :

sensor observations

εi :

random disturbance

References

  1. Acha, V., Willis, W. B., Das, N., & Reardon, K. F. (2003). Fiber optic biosensors for halogenated organics in ground water. Proceedings of the 225th American Chemical Society National Meeting.

  2. Bidmanova, S., Chaloupkova, R., Damborsky, J., & Prokop, Z. (2010). Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Analytical and Bioanalytical Chemistry, 398, 1891–1898.

    Article  CAS  Google Scholar 

  3. Bridle, H., Miller, B., & Desmulliez, M. P. (2014). Application of microfluidics in waterborne pathogen monitoring: a review. Water Research, 55, 256–271.

    Article  CAS  Google Scholar 

  4. Campbell, D. W., Müeller, C., & Reardon, K. F. (2006). Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane. Biotechnology Letters, 28, 883–887.

    Article  CAS  Google Scholar 

  5. Das, N., & Reardon, K. F. (2012). Fiber-optic biosensor for the detection of atrazine: characterization and continuous measurements. Analytical Letters, 45, 251–261.

    Article  CAS  Google Scholar 

  6. Fritzsche, M., Barreiroa, C. G., Hitzmanna, B., & Scheper, T. (2007). Optical pH sensing using spectral analysis. Sensors and Actuators, B, 128, 133–137.

    Article  CAS  Google Scholar 

  7. Janssen, D. B., Scheper, A., Dijkhuizen, L., & Witholt, B. (1985). Degradation of halogenated aliphatic compounds. Applied and Environmental Microbiology, 49, 673–677.

    CAS  Google Scholar 

  8. Jensen, C. D. (2015). Emerging & applied environmental biotechnology: fiber optic biosensors and integrated macrophyte systems. Ph. D Dissertation. Fort Collins, Colorado State University.

  9. Jensen, C. D., & Reardon, K. F. (2006). Effects of biosensor construction, storage time, and measurement environment on the performance of a dehalogenase based optoelectronic enzymatic biosensor. Poster Presentation—3rd Annual WEF/AWWA Student Conference at Colorado State University, Fort Collins CO, USA.

  10. Lackowicz, J. R. (1999). Principles of fluorescence spectroscopy (2nd ed.). New York: Kluwer Academic Plenum Publisher.

    Book  Google Scholar 

  11. Mateo, C., Palomo, J. M., Gloria Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, selectivity and stability via immobilization techniques. Enzyme and Microbial Technology, 6, 1451–1463.

    Article  Google Scholar 

  12. Michelini, E., Cevenini, L., Calabretta, M. M., Spinozzi, S., Camborata, C., & Roda, A. (2013). Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Analytical and Bioanalytical Chemistry, 405(19), 6155–6163.

    Article  CAS  Google Scholar 

  13. Park, J. H., Yang, S. H., Lee, J., Ko, E. H., Hong, D., & Choi, I. S. (2014). Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. Advanced Materials, 26(13), 2001–2010.

    Article  CAS  Google Scholar 

  14. Pieper, S. B., Mestas, S., Lear, K. L., Zhong, X., & Reardon, K. F. (2008). Emission characteristics of ruthenium complex as optical transducer for phosphorescence biosensors. Applied Physics Letters, 92, 081915.

    Article  Google Scholar 

  15. Reardon, K. F., & Bailey, J. E. (1992). Activity regeneration in continuous Clostridium acetobutylicum bioconversions of glucose. Biotechnology Progress, 8, 316–326.

    Article  CAS  Google Scholar 

  16. Reardon, K. F., Campbell, D. W., & Müller, C. (2009). Optical fiber enzymatic biosensor for reagentless measurement of ethylene dibromide. Engineering in Life Sciences, 9, 291–297.

    Article  CAS  Google Scholar 

  17. Reardon, K. F., Scherper, T., Anders, K. D., et al. (1990). Novel application of fluorescence sensors. Applied Biochemistry and Biotechnology, 24, 363–374.

    Article  Google Scholar 

  18. Reardon, K. F., Zhong, Z., & Lear, K. L. (2009). Environmental applications of photoluminescence-based biosensors. Advances in Biochemical Engineering/Biotechnology, 116, 99–123.

    CAS  Google Scholar 

  19. Roda, A., Cevenini, L., Borg, S., Michelini, E., Calabretta, M. M., & Schüler, D. (2013). Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab on a Chip, 13(24), 4881–4889.

    Article  CAS  Google Scholar 

  20. Schanstra, J. P., Rink, R., Pries, F., & Janssen, D. B. (1993). Construction of an expression and site-directed mutagenesis system of haloalkane dehalogenase in Escherichia-coli. Protein Expression and Purification, 4, 479–489.

    Article  CAS  Google Scholar 

  21. Song, L. L., Hennink, E. J., Young, I. T., et al. (1995). Photobleaching kinetics of fluorescein in quantitative fluorescein fluorescence microscopy. Biophysical Journal, 68, 2588–2600.

    Article  CAS  Google Scholar 

  22. Wang, X. D., & Wolfbeis, O. S. (2012). Fiber-optic chemical sensors and biosensors (2008–2012). Analytical Chemistry, 85(2), 487–508.

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by ESTCP Project Number CU-0115, the Colorado State University, Dr. DB Janssen’s laboratory (that developed E. coli BL21 (DE3) pGELAF+), the Colorado School of Mines, and Dr. Kenneth F. Reardon. Thanks to Dr. William Navidi for conversation on the topic of regression models. Special thanks to Brandon Cooksey who made and characterized several of the optodes used for this research. Thanks in particular not only to Dean and Professor Anthony Dean, Dr. David Muñoz, and Dr. Daniel Kaffine, but also to all of my colleagues for inspiring tenacious motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory D. Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, C.D., Müeller, C. Predictor–Response Analysis of Fiber Optic Enzymatic Biosensors Constructed with Nonmodified E. coli BL21 (DE3) pGELAF+ Sensing 1,2-Dichloroethane. Appl Biochem Biotechnol 176, 987–998 (2015). https://doi.org/10.1007/s12010-015-1623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1623-1

Keywords

Navigation