Skip to main content

Advertisement

Log in

Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, Ni/β-Mo2C(S) and Ni/β-Mo2C(G) were prepared from solution-derived precursor with two different carbon sources (starch and glucose) and tested as anodic noble-metal-free catalysts in air-cathode microbial fuel cells (MFCs). The carburized catalyst samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the electrocatalyst towards the oxidation of several common microbial fermentation products (formate, lactate, and ethanol) was studied for MFC based on Klebsiella pneumoniae conditions. The composite MFC anodes were fabricated, and their catalytic behavior was investigated. With different carbon sources, the crystalline structure does not change and the crystallinity and surface area increase. The electrocatalytic experiments show that the Ni/β-Mo2C(G) gives the better bio- and electrocatalytic performance than Ni/β-Mo2C(S) due to its higher crystallinity and BET surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30, 145–152.

    Article  CAS  Google Scholar 

  2. Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

  3. Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4, 497–508.

    Article  CAS  Google Scholar 

  4. Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66, 1292–1297.

    Article  CAS  Google Scholar 

  5. Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39, 942–952.

    Article  CAS  Google Scholar 

  6. Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells—challenges and applications. Environmental Science and Technology, 40, 5172–5180.

    Article  CAS  Google Scholar 

  7. Zeng, L. Z., Zhao, S. F., & Li, W. S. (2015). Ni3Mo3C as anode catalyst for high-performance microbial fuel cells. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-1458-1.

    Google Scholar 

  8. Wang, Y. Q., Li, B., Zeng, L. Z., Cui, D., Xiang, X. D., & Li, W. S. (2013). Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosensors Bioelectronics, 41, 582–588.

    Article  CAS  Google Scholar 

  9. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  10. Levy, R. B., & Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science, 181, 547–549.

    Article  CAS  Google Scholar 

  11. Zeng, L. Z., Zhang, L. X., Li, W. S., Zhao, S. F., Lei, J. F., & Zhou, Z. H. (2010). Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae. Biosensors Bioelectronics, 25, 2696–2700.

    Article  CAS  Google Scholar 

  12. Zeng, L. Z., Zhao, S. F., Wang, Y. Q., Hong, L., & Li, W. S. (2012). Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae. International Journal of Hydrogen Energy, 37, 4590–4596.

    Article  CAS  Google Scholar 

  13. Zhang, L. X., Zhou, S. G., Zhuang, L., Li, W. S., Zhang, J. T., Lu, N., & Deng, L. F. (2008). Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochemistry Communications, 10, 1641–1643.

    Article  CAS  Google Scholar 

  14. Zhang, L. X., Liu, C. S., Zhuang, L., Li, W. S., Zhou, S. G., & Zhang, J. T. (2009). Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors Bioelectronics, 24, 2825–2829.

    Article  CAS  Google Scholar 

  15. Barnett, C. J., Burstein, G. T., Kucernak, A. R. J., & Williams, K. R. (1997). Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds. Electrochimical Acta, 42, 2381–2388.

    Article  CAS  Google Scholar 

  16. Preiss, H., Mayer, B., & Olschewski, C. (1998). Preparation of molybdenum and tungsten carbides from solution derived precursors. Journal of Materials Science, 33, 713–722.

    Article  CAS  Google Scholar 

  17. Song, H. K., Sung, J. H., Jung, Y. H., Lee, K. H., Dao, L. H., Kim, M. H., & Kim, H. N. (2004). Electrochemical porosimetry: deconvolution of distribution functions. Journal of the Electrochemical Society, 151, 102–109.

    Article  Google Scholar 

  18. Elliott, J. M., & Owen, J. R. (2000). Electrochemical impedance characterisation of a nanostructured (mesoporous) platinum film. Physical Chemistry Chemical Physics, 2, 5653–5659.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National 863 project of China (No. 2009AA05Z112) and the National Natural Science Foundation of China (NSFC, No. 20573039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-zhen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Lz., Zhao, Sf. & Li, Ws. Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C. Appl Biochem Biotechnol 176, 978–986 (2015). https://doi.org/10.1007/s12010-015-1622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1622-2

Keywords

Navigation