Skip to main content

Advertisement

Log in

Obesity and Clinical Riskiness Relationship: Therapeutic Management by Dietary Antioxidant Supplementation—a Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Obesity is a global health problem affecting all age groups, leading to many complications such as type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, atherosclerosis, and stroke. Physiologically, obesity arises from metabolic changes in the tissues and organs of the human body; these changes result in an imbalance between energy intake and energy expenditure, which in turn results in increased fat accumulation in adipose tissue. Such fat accumulation predisposes individuals to development of several health problems. Two different obesity treatment drugs are currently on the market; Orlistat, which reduces intestinal fat absorption via inhibiting pancreatic lipase, and Sibutramine, an anorectic or appetite suppressant. Both drugs have hazardous side effects, including increased blood pressure, dry mouth, constipation, headache, and insomnia. For this reason, a wide variety of natural materials have been explored for their obesity treatment potential. Therefore, the present review focuses on the safety and efficacy of some herbal medicines in the management of obesity through covering their beneficial effects and mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, M. L., Zhao, S. M., Li, W. Z., Zhang, X., Ge, C. R., Duan, G., & Gao, S. Z. (2010). Anti-adipocyte scFv-Fc antibody suppresses subcutaneous adipose tissue development and affects lipid metabolism in minipigs. Applied Biochemistry and Biotechnology, 162, 687–697.

    CAS  Google Scholar 

  2. Aronne, L. J., & Segal, K. R. (2002). Adiposity and fat distribution outcome measures: assessment and clinical implications. Obesity Journal, 10, 14–21.

    Google Scholar 

  3. Bajari, T. M., Nimpf, J., & Schneider, W. J. (2004). Role of leptin inreproduction. Journal of Current Opinion Lipidology, 15, 315–319.

    CAS  Google Scholar 

  4. Baskin, D. G., Breininger, J. F., & Schwartz, M. W. (1999). Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes Journal, 48, 828–833.

    CAS  Google Scholar 

  5. Jabeen, A., Khan, U. A., & Lodhi, G. M. (2011). Effects of simvastatin on lipid profile and nerve conduction velocity in obese sprague dawley rats. Journal of Ayub Medical College, 23, 36–39.

    Google Scholar 

  6. Bray, G. A. (2004). How do we get fat? An epidemiologic and metabolic approach. Clinical Dermatology, 22, 281–288.

    Google Scholar 

  7. Ellacott, K. L., Murphy, J. G., Marks, D. L., & Cone, R. D. (2007). Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling. Journal of Endocrinology, 148, 6186–6194.

    CAS  Google Scholar 

  8. Bray, G. A. (2002). The underlying basis for obesity: relationship to cancer. Journal of Nutrition, 132, 3451–3455.

    Google Scholar 

  9. Morrill, A. C., & Chinn, C. D. (2004). The obesity epidemic in the United States. Journal of Public Health Policy, 25, 353–366.

    Google Scholar 

  10. Mobbs, C. V., Moreno, C. L., & Poplawski, M. (2013). Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Endocrinology and Metabolism, 24, 488–494.

    CAS  Google Scholar 

  11. Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with over-weight and obesity. Journal of American Medical Association, 282, 1523–1529.

    CAS  Google Scholar 

  12. Gautier, A., Roussel, R., Ducluzeau, P. H., Lange, C., Vol, S., Balkau, B., & Bonnet, F. (2010). Increases in waist circumference and weight as predictors of type 2 diabetes in individuals with impaired fasting glucose: influence of baseline BMI. Diabetes Care, 33, 1850–1852.

    Google Scholar 

  13. Colditz, G. A., Willett, W. C., Rotnitzky, A., & Manson, J. E. (1995). Weight gain as a risk factor for clinical diabetes mellitus in women. Annual International Medical, 122, 481–486.

    CAS  Google Scholar 

  14. Koh-Banerjee, P., Wang, Y., Hu, F. B., Spiegelman, D., Willett, W. C., & Rimm, E. B. (2004). Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. American Journal of Epidemiology, 159, 1150–1159.

    Google Scholar 

  15. Guh, D. P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C. L., & Anis, A. H. (2009). The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. Bio-Med Central and Public Health, 9, 88.

    Google Scholar 

  16. Bayturan, O., Tuzcu, E. M., & Lavoie, A. (2010). The metabolic syndrome, its component risk factors, and progression of coronary atherosclerosis. Archives of Internal Medicine, 170, 478–484.

    CAS  Google Scholar 

  17. Jena, P. K., Singh, S., Prajapati, B., Nareshkumar, G., Mehta, T., & Seshadri, S. (2014). Impact of targeted specific antibiotic delivery for gut microbiota modulation on high-F. Applied Biochemistry and Biotechnology, 172, 3810–3826.

    CAS  Google Scholar 

  18. Basciano, H., Federico, L., & Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition and Metabology, 2, 1–14.

    Google Scholar 

  19. Rocha, V. Z., & Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology, 6, 399–409.

    CAS  Google Scholar 

  20. Li, G., Zhang, P., & Wang, J. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: a 20-year follow-up study. Lancet Journal, 371, 1783–1789.

    Google Scholar 

  21. Nisha, V. M., Anusree, S. S., Priyanka, A., & Raghu, K. G. (2014). Apigenin and quercetin ameliorate mitochondrial alterations by tunicamycin-induced ER stress in 3 T3-L1 adipocytes. Applied Biochemistry and Biotechnology, 174, 1365–1375.

    CAS  Google Scholar 

  22. Trayhurn, P., & Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society, 60, 329–339.

    CAS  Google Scholar 

  23. Boden, G., Duan, X., Homko, C., Molina, E. J., Song, W., Perez, O., Cheung, P., & Merali, S. (2008). Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Journal of Diabetes, 57, 2438–2444.

    CAS  Google Scholar 

  24. Kawasaki, N., Asada, R., Saito, A., Kanemoto, S., & Imaizumi, K. (2012). Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Reports, 2, 799.

    Google Scholar 

  25. Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. Clinical Investigation, 115, 2656–2664.

    CAS  Google Scholar 

  26. Bogers, R. P., Bemelmans, W. J., & Hoogenveen, R. T. (2007). Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300,000 persons. Archives of Internal Medicine, 167, 1720–1728.

    Google Scholar 

  27. Strazzullo, P. D., Elia, L., Cairella, G., Garbagnati, F., Cappuccio, F. P., & Scalfi, L. (2010). Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Journal Stroke, 41, 418–426.

    Google Scholar 

  28. McGee, D. L. (2005). Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Annual Epidemiology, 15, 87–97.

    Google Scholar 

  29. American Institute for Cancer Research (AIC). (2007). World cancer research fund. Food, nutrition, physical activity and the prevention of cancer. Washington: American Institute for Cancer Research.

    Google Scholar 

  30. Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C., & Hankinson, S. E. (2006). Adult weight change and risk of postmenopausal breast cancer. Journal of American Medical Association, 296, 193–201.

    CAS  Google Scholar 

  31. Heilbronn, L. K., & Campbell, L. V. (2008). Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Current Pharmaceutical Design, 14, 1225–1230.

    CAS  Google Scholar 

  32. Gustafson, B. (2010). Adipose tissue, inflammation and atherosclerosis. Journal of Atherosclerosis Thrombosis, 17, 332–341.

    CAS  Google Scholar 

  33. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Journal of Natural, 444, 860–867.

    CAS  Google Scholar 

  34. Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Journal of Cell, 131, 242–256.

    CAS  Google Scholar 

  35. McClean, K. M., Kee, F., Young, I. S., & Elborn, J. S. (2008). Obesity and the lung: epidemiology. Thorax Journal, 63, 649–654.

    CAS  Google Scholar 

  36. Beuther, D. A., & Sutherland, E. R. (2007). Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. American Journal of Respiratory and Critical Care Medicine, 175, 661–666.

    Google Scholar 

  37. Tuomilehto, H. P., Seppa, J. M., & Partinen, M. M. (2009). Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine, 179, 320–327.

    Google Scholar 

  38. Nerfeldt, P., Nilsson, B. Y., Mayor, L., Udden, J., & Friberg, D. (2010). A two-year weight reduction program in obese sleep apnea patients. Clinical Sleep Medicine, 6, 479–486.

    Google Scholar 

  39. Alzheimer’s Association (2012). Alzheimer’s facts and figures. Alzheimer’s & Dementia. 2010.

  40. Beydoun, M. A., Beydoun, H. A., & Wang, Y. (2008). Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obesity Reviews, 9, 204–218.

    CAS  Google Scholar 

  41. Profenno, L. A., Porsteinsson, A. P., & Faraone, S. V. (2010). Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biological Psychiatry, 67, 505–512.

    Google Scholar 

  42. Kazemipoor, M., Radzi, J. W. M., Cordell, G. A., & Yaze, I. (2012). Potential of traditional medicinal plants for treating obesity: a review. International Conference on Nutrition and Food Sciences, 39, 1–6.

    Google Scholar 

  43. Duthie, G. G., Gardner, P. T., & Kyle, J. A. (2003). Plant polyphenols: are they the new magic bullet? Proceeding Nutrition Society, 62, 599–603.

    CAS  Google Scholar 

  44. Naik, R. S., Mujumdar, A. M., & Ghaskadbi, S. (2004). Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. Ethnopharmacology, 95, 31–37.

    CAS  Google Scholar 

  45. Bengmark, S. (2006). Curcumin, an atoxic antioxidant and natural NF-B, cyclooxygenase-2, lipoxygenases, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. Journal of Parenter Enteral Nutrition, 30, 45–51.

    CAS  Google Scholar 

  46. Masuda, T., Hidaka, K., Shinohara, A., Maekawa, T., Takeda, Y., & Yamaguchi, H. (1999). Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products fromcurcumin. Journal of Agricultural and Food Chemistry, 47, 71–77.

    CAS  Google Scholar 

  47. Daniel, S., Limson, J. L., Dairam, A., Watkins, G. M., & Daya, S. (2004). Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Inorganic Biochemistry, 98, 266–275.

    CAS  Google Scholar 

  48. Kuhad, A., & Chopra, K. (2007). Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. European Journal of Pharmacology, 576, 34–42.

    CAS  Google Scholar 

  49. Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., & Zhu, D. Y. (2007). Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. European Journal of Pharmacology, 561, 54–62.

    CAS  Google Scholar 

  50. El-Habibi, E. M., El-Wakf, A. M., & Mogall, A. (2013). Efficacy of curcumin in reducing risk of cardiovascular disease in high fat diet-fed rats. Journal of Bioanalysis and Biomedicine, 5, 66–70.

    Google Scholar 

  51. Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice 1–3. Journal of Nutrition, 139, 919–925.

    CAS  Google Scholar 

  52. Tirkey, N., Kaur, G., Vij, G., & Chopra, K. (2005). Curcumin, a diferuloylmethane, attenuates cyclosporine induced renal dysfunction and oxidative stress in rat. kidneys. Pharmacology Journal, 5, 15–25.

    Google Scholar 

  53. Eybl, V., Kotyzova, D., & Koutensky, J. (2006). Comparative study of natural antioxidants curcumin, resveratrol and melatonin in cadmiuminduced oxidative damage in mice. Toxicology Journal, 225, 150–156.

    CAS  Google Scholar 

  54. Rajakrishnan, V., Viswanathan, P., Rajasekharan, K. N., & Menon, V. P. (1999). Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage. Journal of Phytotherapy Research, 13, 571–574.

    CAS  Google Scholar 

  55. Fu, Y., Zheng, S., Lin, J., Ryerse, J., & Chen, A. (2008). Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Journal of Molecular Pharmacology, 73, 399–409.

    CAS  Google Scholar 

  56. Jain, S. K., Rains, J., & Jones, K. (2006). Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radical Biology and Medicine, 41, 92–96.

    CAS  Google Scholar 

  57. Nguyen, K. T., Shaikh, N., Shukla, K. P., Su, S. H., Eberhart, R. C., & Tang, L. (2004). Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Journal of Biomaterials Applications, 25, 5333–5346.

    CAS  Google Scholar 

  58. Yang, J. Y., Della-Fera, M. A., Nelson-Dooley, C., & Baile, C. (2006). Molecular mechanisms of apoptosis induced by ajoene in 3 T3–L1 adipocytes. Obesity Journal, 14, 388–397.

    CAS  Google Scholar 

  59. Pendurthi, U. R., & Rao, L. V. (2000). Suppression of transcription factor Egr-1 by curcumin. Thrombosis Research Journal, 97, 179–189.

    CAS  Google Scholar 

  60. Fan, C., Wo, X., Qian, Y., Yin, J., & Gao, L. (2006). Effect of curcumin on the expression of LDL receptor in mouse macrophages. Journal of Ethnopharmacology, 105, 251–254.

    CAS  Google Scholar 

  61. Ramirez-Bosca, A., Soler, A., Carrion-Gutierrez, M. A., Pamies-Mira, D., Pardo Zapata, J., Diaz-Alperi, J., Bernd, A., Quintanilla Almagro, E., & Miquel, J. (2000). An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mechanisms of Ageing and Development Journal, 114, 207–210.

    CAS  Google Scholar 

  62. Chen, W. F., Deng, S. L., Zhou, B., Yang, L., & Liu, Z. L. (2006). Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radical Biology and Medicine, 40, 526–535.

    CAS  Google Scholar 

  63. El-Wakf, M. A., Hassan, A. H., & Habza, N. M. (2015). Efficacy of fenugreek to ameliorate nitrate-induced diabetes in young and adult male rats. Journal of Cytotechnology, 67, 437–447.

    CAS  Google Scholar 

  64. Brown, A. L., Lane, J., Holyoak, C., Nicol, B., Mayes, A. E., & Dadd, T. (2011). Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial. British Journal of Nutrition, 7, 1–10.

    Google Scholar 

  65. Zheng, J., Yang, B., Huang, T., Yu, Y., Yang, J., & Li, D. (2011). Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutrition and Cancer Journal, 63, 663–672.

    CAS  Google Scholar 

  66. Sun, C. L., Yuan, J. M., Lee, M. J., Yang, C. S., Gao, Y. T., Ross, R. K., & Yu, M. C. (2002). Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China. Carcinogenesis Journal, 23, 1497–1503.

    CAS  Google Scholar 

  67. Zheng, G., Sayama, K., Okubo, T., Juneja, L. & Oguni, I. (2004). Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. in vivo, 18, 55–62.

  68. Ahmad, N., Fayes, D. K., Nieminen, A. L., Agarwal, R., & Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. Journal of National Cancer Institute, 89, 1881–1889.

    CAS  Google Scholar 

  69. Cao, Y., & Cao, R. (1999). Angiogenesis inhibited by drinking tea. Journal of Nature, 398, 381.

    CAS  Google Scholar 

  70. Kono, S., Shinchi, K., Wakabayashi, K., Honjo, S., Todoroki, I., Sakurai, Y., Imanishi, K., Nishizawa, H., Ogawa, S., & Katsurada, M. (1996). Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. Journal of Epidemiology, 6, 128–133.

    CAS  Google Scholar 

  71. Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., & Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Journal of Cancer Research, 66, 1234–1240.

    CAS  Google Scholar 

  72. Kao, Y. H., Hiipakka, R. A., & Liao, S. (2000). Modulation of obesity by a green tea catechin. American Journal of Clinical Nutrition, 72, 1232–1234.

    CAS  Google Scholar 

  73. Rumpler, W., Seale, J., Clevidence, B., Judd, J., Wiley, E., Yamamoto, S., Komatsu, T., Sawaki, T., Ishikura, Y., & Hosoda, K. (2001). Oolong tea increases metabolic rate and fat oxidation in men. Journal of Nutrition, 131, 2848–2852.

    CAS  Google Scholar 

  74. Kao, Y. H., Hiipakka, R. A., & Liao, S. (2000). Modulation of endocrine systems and food intake by green tea epigallocatechingallate. Endocrinology Journal, 141, 980–987.

    CAS  Google Scholar 

  75. Dulloo, A. G., Seydoux, J., Girardier, L., Chantre, P., & Vandermander, J. (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of Obesity, 24, 252–258.

    CAS  Google Scholar 

  76. Kobayashi, K., Nagato, Y., Aoi, N., Juneja, L. R., Kim, M., Yamamoto, T., & Sugimoto, S. (1998). Effects of L-theanine on the release of brain waves in human volunteers. Nippon Nogeikagaku Kaishi Journal, 72, 153–157.

    CAS  Google Scholar 

  77. Yokogoshi, H., Kobayashi, M., Mochizuki, M., & Terashima, T. (1998). Effect of theanine, Á glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochemical Research Journal, 23, 667–673.

    CAS  Google Scholar 

  78. Kakuda, T., Nozawa, A., Unno, T., Okamura, N., & Okai, O. (2000). Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Bioscience Biotechnology Biochemistry, 64, 287–293.

    CAS  Google Scholar 

  79. Peyron, L. (2002). Production of bitter orange neroli and pettigrain oils. In J. Dugo & A. DiGiacomo (Eds.), Citrus: The genus citrus. London & New York: Taylor & Francis.

    Google Scholar 

  80. Bent, S., Padula, A., & Nehuaus, J. (2004). Safety and efficacy of citrus aurantium for weight loss. American Journal of Cardiology, 94, 1359–1361.

    Google Scholar 

  81. Preuss, H. G., DiFernando, D., Bagchi, M., & Bagchi, D. (2002). Citrus aurantium as a thermogenic, weight-reduction replacement for ephedra: an overview. Journal of Medicine, 33, 247–264.

    Google Scholar 

  82. Carpene, C., Galitzky, J., Fontana, E., Atgie, C., Lafontan, M., & Berlan, M. (1999). Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. NaunynSchmiedebergs Archives Pharmacology, 359, 310–321.

    CAS  Google Scholar 

  83. Bui, L. T., Nguyen, D. T., & Ambrose, P. J. (2006). Blood pressure and heart rate effects following a single dose of bitter orange. Annals Pharmacotherapy, 40, 53–57.

    Google Scholar 

  84. Stohs, S. J., Preuss, H. G., & Shara, M. (2012). A review of the human hlinical studies involving Citrus aurantium (Bitter Orange) extract and its primary protoalkaloid p-Synephrine. International Journal of Medical Sciences, 9, 527–538.

    CAS  Google Scholar 

  85. Arias, B. A., & Ramón-Laca, L. (2005). Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. Journal of Ethnopharmacology, 97, 89–95.

    Google Scholar 

  86. Slezak, T., Francis, P. S., Anastos, N., & Barnett, N. W. (2007). Determination of synephrine in weight-loss products using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Journal of Analytica Chimica Acta, 593, 98–102.

    CAS  Google Scholar 

  87. Haaz, S., Fontaine, K. R., Cutter, G., Limdi, N., Perumean-Chaney, S., & Allison, D. B. (2006). Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update. Obesity Review, 7, 79–88.

    CAS  Google Scholar 

  88. Stohs, S. J., Preuss, H. G., & Shara, M. A. (2011). A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxidative Medicine and Cellular Longevity, 2011, 1–9.

    Google Scholar 

  89. Carai, M. A., Fantini, N., Loi, B., Colombo, G., Riva, A., & Morazzoni, P. (2009). Potential efficacy of preparations derived from Phaseolus vulgaris in the control of appetite, energy intake, and carbohydrate metabolism. Diabetes Metabolic Syndrome and Obesity, 2, 145–153.

    CAS  Google Scholar 

  90. Bazzano, L. A., He, J., Ogden, L. G., Loria, C. M., & Whelton, P. K. (2003). Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the national health and nutrition examination survey I epidemiologic follow-up study. Archives of Internal Medicine, 163, 1897–1904.

    Google Scholar 

  91. Queiroz, K. S., de Oliveira, A. C., & Helbig, E. (2002). Soaking the common bean in a domestic preparation reduced the contents of raffinose-type oligosaccharides but did not interfere with nutritive value. Journal of Nutritional Science and Vitaminology, 48, 283–289.

    Google Scholar 

  92. Barrett, M. L., & Udani, J. K. (2011). A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutritional Journal, 10, 24–29.

    Google Scholar 

  93. McIntosh, M., & Miller, C. A. (2001). Diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutrition Review, 59, 52–55.

    CAS  Google Scholar 

  94. Gibson, L. & Benson, G. (2002). Origin, history, and uses of oat (Avena sativa) and wheat (Triticum aestivum). Iowa State University. Department of Agronomy.

  95. Kurtz, E. S., & Wallo, W. (2007). Colloidal oat meal: history, chemistry and clinical properties. Journal of Drugs Dermatology, 6, 167–170.

    Google Scholar 

  96. Vader, L. W., Stepniak, D. T., & Bunnik, E. M. (2003). Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology Journal, 125, 1105–1113.

    CAS  Google Scholar 

  97. Tapola, N., Karvonen, H., Niskanen, L., Mikola, M., & Sarkkinen, E. (2005). Glycemic responses of oat bran products in type 2 diabetic patients. Journal of Nutrition Metabolism and Cardiovascular Diseases, 15, 255–261.

    CAS  Google Scholar 

  98. Hassan, H. A. (2007). Therapeutic effect of oat (Avena sativa L) grains and atorvastatin drug against physiological alterations on lipids metabolism and oxidative stress in cholesterol-fed rats. Egypt Journal of Zoology, 48, 191–207.

    Google Scholar 

  99. Queenan, K. M., Stewart, M. L., Smith, K. N., Thomas, W., Fulcher, R. G., & Slavin, J. L. (2007). Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutrition Journal, 6, 1–6.

    Google Scholar 

  100. Ellegård, L., & Andersson, H. (2007). Oat bran rapidly increases bile acid excretion and bile acid synthesis: an ileostomy study. European Journal of Clinical Nutrition, 61, 938–945.

    Google Scholar 

  101. El-Wakf, M. A., Hassan, A. H., El-komy, M. M., & Amr, M. M. (2011). Role of dietary fibers in the management of diabetes induced heart disease in male rats. Journal of American Science, 7, 638–649.

    Google Scholar 

  102. Poppitt, S. D. (2007). Soluble fibre oat and barley beta-glucan enriched products: can we predict cholesterol-lowering effects? British Journal of Nutrition, 97, 1049–1050.

    CAS  Google Scholar 

  103. Arun, M., & Asha, V. V. (2007). Preliminary studies on antihepatotoxic effect of Physalisperuviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats. Journal of Ethnopharmacology, 111, 110–114.

    CAS  Google Scholar 

  104. Wu, S. J., Tsai, J. Y., Chang, S. P., Lin, D. L., Wang, S. S., Huang, S. N., & Ng, L. T. (2006). Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalisperuviana. Journal of Ethnopharmacology, 108, 407–413.

    CAS  Google Scholar 

  105. Wu, S. J., Ng, L. T., Lin, D. L., Wang, S. S., & Lin, C. C. (2004). Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and mitochondrial signalling transduction pathway. Cancer Letters Journal, 215, 199–208.

    CAS  Google Scholar 

  106. Mayorga, H., Knapp, H., Winterhalter, P., & Duque, C. (2001). Glycosidically bound flavor compounds of cape gooseberry (Physalisperuviana L.). Journal of Agricultural and Food Chemistry, 49, 1904–1908.

    CAS  Google Scholar 

  107. Gutierrez, M. S., Trinchero, G. D., Cerri, A. M., Vilella, F., & Postharvest, G. O. (2008). Different responses of goldenberry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Journal of Postharvest Biology and Technology, 48, 199–205.

    CAS  Google Scholar 

  108. Ramadan, M. F., Zayed, R., Abozid, M., & Asker, M. M. S. (2011). Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a highfat diet. Grasas Aceites Journal, 62, 443–452.

    CAS  Google Scholar 

  109. Ramadan, M. F., & Morsel, J. T. (2003). Oil goldenberry (Physalisperviana L.). Journal of Agricultural and Food Chemistry, 51, 969–974.

    CAS  Google Scholar 

  110. Ramadan, M. F., & Mörsel, J. T. (2009). Oil extractability from enzymatically-treated goldenberry (Physalisperuviana L.) pomace: range of operational variables. International Journal of Food Science Technology, 44, 435–444.

    CAS  Google Scholar 

  111. Wang, I. K., Lin-Shiau, S. Y., & Lin, J. K. (1999). Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaremia HL-60 cells. European Journal of Cancer, 35, 1517–1525.

    CAS  Google Scholar 

  112. Sgaroba, M. A., & Ramadan, F. M. (2011). Rheological behavior and physiochemical characteristics of goldenberry (Physalis Peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 35, 201–219.

    Google Scholar 

  113. Ramadan, M. F., & Mörsel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalisperuviana L.) juice. Journal of Science Food Agriculture, 87, 452–460.

    CAS  Google Scholar 

  114. Ramadan, M. F. (2012). Physalisperuvianapomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. International Journal of Fats and Oils, 63, 411–422.

    CAS  Google Scholar 

  115. Ferretti, G., Bacchetti, T., Belleggia, A., & Neri, D. (2010). Cherry antioxidants: from farm to table. Molecules Journal, 15, 6993–7005.

    CAS  Google Scholar 

  116. Martin, K. R., & Burrell, L. (2010). 100% tart cherry juice reduces pro-inflammatory biomarkers in verweight and obese subjects. Journal of Federation American Society Experimental Biology, 24, 15.

    Google Scholar 

  117. Seymour, E. M., Singer, A. A., & Kirakosyan, A. (2008). Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator activated receptors in rats with intake of tart cherry. Journal of Medicinal Food, 11, 252–259.

    CAS  Google Scholar 

  118. Coles, K. (2011). The Effects of 100% Tart cherry juice on plasma lipid values and markers of inflammation in overweight and obese subjects by A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science.

  119. Pittler, M. H., & Ernst, E. (2005). Complementary therapies for reducing body weight: a systematic review. International Journal of Obesity, 29, 1030–1038.

    CAS  Google Scholar 

  120. Abdullaev, F., & Espinosa-Aguirre, J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and Prevention, 28, 426–432.

    CAS  Google Scholar 

  121. Charles, D. J. (2013). Saffron. In antioxidant properties of spices, herbs and other sources (pp. 509–520). New York: Springer.

    Google Scholar 

  122. Poma, A., Fontecchio, G., Carlucci, G., & Chichiricco, G. (2012). Anti-inflammatory properties of drugs from saffron crocus. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 11, 37–51.

    CAS  Google Scholar 

  123. Kamalipour, M., & Akhondzadeh, S. (2011). Cardiovascular effects of saffron: an evidence-based review. Journal Tehran University Heart Center, 6, 59–61.

    Google Scholar 

  124. Shirali, S., Zahra, B. S., & Nakhjavani, M. (2012). Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27, 1042–1047.

    Google Scholar 

  125. Imenshahidi, M., Hosseinzadeh, H., & Javadpour, Y. (2010). Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Journal of Phytotherapy Research, 24, 990–994.

    CAS  Google Scholar 

  126. Sheng, L., Qian, Z., Zheng, S., & Xi, L. (2006). Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. European Journal of Pharmacology, 543, 116–122.

    CAS  Google Scholar 

  127. Mostafa, S., Ebrahiem, M., & Hasan, H. (2011). Studies of effect of useing Saffron, Cyperus, Manuka Honey and their combination on rats suffering from hyperglycemia (pp. 2285–2308). Cairo: Proceedings of the 6th Arab and 3rd International Annual Scientific Conference on Development of Higher Specific Education Programs in Egypt and the Arab World in the Light of Knowledge Era Requirements.

    Google Scholar 

  128. Hosseinzadeh, H., & Noraei, N. B. (2009). Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Journal of Phytotherapy Research, 23, 768–774.

    CAS  Google Scholar 

  129. Gout, B., Bourgesb, C., & Paineau-Dubreuilb, S. (2010). Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Journal of Nutrition Research, 30, 305–313.

    CAS  Google Scholar 

  130. García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Journal of Inflammation Research, 8, 537–552.

    Google Scholar 

  131. Terra, X., Montagut, G., Bustos, M., Llopiz, N., Ardèvol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., & Arola, L. (2009). Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. Journal of Nutrition Biochemical, 20, 210–218.

    CAS  Google Scholar 

  132. Slanc, P., Doljak, B., Kreft, S., Lunder, M., Janeš, D., & Štrukelj, B. (2009). Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Journal of Phytotherapy Research, 23, 874–877.

    CAS  Google Scholar 

  133. Mashmoul, M., Azlan, A., Khaza, H., Yusof, B. N., & Noor, S. M. (2013). Saffron: a natural potent antioxidant as a promising anti-obesity drug. Antioxidants Journal, 2, 293–308.

    Google Scholar 

  134. Tiengburanatam, N., Boonmee, A., Sangvanich, P., & Karnchanatat, A. (2010). A novel α-glucosidase inhibitor protein from the rhizomes of zingiber ottensii valeton. Applied Biochemistry and Biotechnology, 162, 1938–1951.

    CAS  Google Scholar 

  135. Nicollr, R., & Henein, M. (2009). Ginger (Zingiberofficinales Roscoe): a hot remedy for cardiovascular disease. International Journal of Cardiology, 131, 408–409.

    Google Scholar 

  136. Ali, A., & Fahmy, G. (2009). Effects of water extracts of thyme (Thymus vulgaris) and ginger (Zingiberofficinale Roscoe) on alcohol abuse. Journal of Food Chemical Toxicology, 47, 1945–1949.

    Google Scholar 

  137. Mahmoud, R. H., & Elnour, W. A. (2013). Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Medical and Pharmacological Science, 17, 75–83.

    CAS  Google Scholar 

  138. Kadnur, S., & Goyal, R. (2005). Beneficial effects of Zingiberofficinales Roscoe on fructose induced hyperlipidemia and hyperinsulinemia in rats. Indian Journal of Experimental Biology, 43, 1161–1164.

    Google Scholar 

  139. Gerald, B., Badreldin, H., Musbah, O., & Abderrahim, N. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiberoffcinale roscoe): a review of recent research. Journal of Food and Chemical Toxicology, 46, 409–420.

    Google Scholar 

  140. Hassan, H. A., & El-Gendy, A. M. (2003). Evaluation of silymarin and / or ginger effect on induced hepatotoxicity by carbon tetrachloride in male albino rats. Egyptian Journal of Hospital Medicine, 12, 101–112.

    CAS  Google Scholar 

  141. Shirani, G., & Ganesharanee, R. (2009). Extruded products with fenugreek (Trigonella foenum graecium), chickpea and rice: physical properties, sensory acceptability and glycaemic index. Journal of Food Engineering, 90, 44–52.

    Google Scholar 

  142. Moosa, A. M., Rashid, M. U., Asadi, A. Z. S., Ara, N., Uddin, M. M., & Ferdaus, A. (2006). Hypolipidemic effects of fenugreek seed powder. Bangladesh Journal of Pharmacology, 1, 64–67.

    Google Scholar 

  143. Renuka, C., Ramesh, N., & Saravanan, K. (2009). Evaluation of the antidiabetic effect of Trigonellafoenumgraecum seed powder on alloxan induced diabetic albino rats. International Journal of Pharmaceutical Technology Research, 1, 1580–1584.

    Google Scholar 

  144. Basch, E., Ulbricht, C., Kuo, G., Szapary, P., & Smith, M. (2003). Therapeutic applications of fenugreek. Alternative Medicine Review, 8, 20–27.

    Google Scholar 

  145. Yoshikawa, M., Murakami, T., & Komatsu, H. (1997). Medicinal food stuffs. IV. Fenugreek seed. (1): structures of trigoneosidesIa, Ib, IIa, IIb, IIIa and IIIb, new furostanolsaponins from the seeds of Indian Trigonella foenumgraecum L. Journal of Chemical and Pharmaceutical Bulletin, 45, 81–87.

    CAS  Google Scholar 

  146. Abd-El Mawla, A. M. A., & Osman, H. E. H. (2011). Elicitation of trigonelline and 4 -hydroxy-isoleucine with hypoglycemic activity in cell suspension cultures of Trigonella foenumgraecum L. The Open Conference Proceedings Journal, 2, 80–87.

    CAS  Google Scholar 

  147. Eidi, A., Eidi, M., & Sokhteh, M. (2007). Effect of fenugreek (Trigonellafoenum graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Journal of Nutrition Research, 27, 728–733.

    CAS  Google Scholar 

  148. Raju, J., Gupta, D., Rao, A. R., Yadava, P. K., & Baquer, N. Z. (2001). Trigonellafoenum-graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Journal of Molecular and Cellular Biochemistry, 224, 45–51.

    CAS  Google Scholar 

  149. Buyken, A. E., Toeller, M., Heitkamp, G., Vitelli, F., Stehle, P., Scherbaum, W. A., & Fuller, J. H. (1999). IDDM complications study group : relation of fiber intake to HbA1c and the prevalence of severe ketoacidosis and severehypoglycemia. Diabetologia Journal, 41, 882–890.

    Google Scholar 

  150. Lee, M., Kim, I., Kim, C., & Kim, Y. (2011). Reduction of body weight by dietary garlic is associated with an increase in uncoupling protein mRNA expression and activation of AMP-activated protein kinase in diet-induced obese mice. Journal of Nutrition, 141, 1947–1953.

    CAS  Google Scholar 

  151. Yeh, Y. Y., & Liu, L. (2001). Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. Journal of Nutrition, 131, 989–993.

    Google Scholar 

  152. Jalal, R., Bagheri, S. M., Moghimi, A., & Rasuli, M. B. (2007). Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. Journal of Clinical Biochemistry and Nutrition, 41, 218–223.

    Google Scholar 

  153. Sobenin, I. A., Andrianova, I. V., Fomchenkov, I. V., Gorchakova, T. V., & Orekhov, A. N. (2009). Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Journal of Hypertension Research, 32, 433–437.

    CAS  Google Scholar 

  154. Milner, J. A. (2001). A historical perspective on garlic and cancer. Journal of Nutrition, 131, 1027–1031.

    Google Scholar 

  155. Hassan, H. A., El-Agmy, S. M., Gaur, R., Fernando, L. A., Raj, H. G., & Ouhtit, A. (2009). In vivo evidence of hepato-and-reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. International Journal of Biology Science, 5, 249–255.

    CAS  Google Scholar 

  156. Jisawa, H., Suma, K., Origuchi, K., Kumagai, H., Seki, T., & Ariga, T. (2008). Biological and chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry, 56, 4229–4235.

    Google Scholar 

  157. Han, C. Y., Ki, S. H., Kim, Y. W., Noh, K., Lee, Y., Kang, B., Ryu, J. H., Jeon, R., Kim, E. H., & Hwang, S. J. (2011). Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxidants & Redox Signaling Journal, 14, 187–202.

    CAS  Google Scholar 

  158. Keophiphath, M., Priem, F., Jacquemond-Collet, I., Clément, K., & Lacasa, D. (2009). 1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes. Journal of Nutrition, 139, 2055–2060.

    CAS  Google Scholar 

  159. Palaniswamy, U. R., McAvoy, R. J., & Bible, B. B. (2001). Stage of harvest and polyunsaturated essential fatty acid concentrations in purslane (Portulaca oleraceae) leaves. Journal of Agricultural and Food Chemistry, 49, 3490–3493.

    CAS  Google Scholar 

  160. Mohammadi, A., & Oshaghi, E. A. (2014). Effect of garlic on lipid profile and expression of LXR alpha in intestine and liver of hypercholesterolemic mice. Journal of Diabetes & Metabolic Disorders, 13, 20.

    Google Scholar 

  161. Kwon, M. J., Song, Y. S., Choi, M. S., Park, S. J., Jeong, K. S., & Song, Y. O. (2003). Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Science Journal, 72, 2953–2964.

    CAS  Google Scholar 

  162. Lin, M. C., Wang, E. J., Lee, C., Chin, K. T., Liu, D., Chiu, J. F., & Kung, H. F. (2002). Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. Journal of Nutrition, 132, 1165–1168.

    CAS  Google Scholar 

  163. Chan, K., Islam, M. W., Kamil, M., Radakrishnan, R., Zakaria, M. N., Habibullah, M., & Attas, A. (2000). The analgesic and anti-inflammatory effects of portulaca oleracea L Subsp. Sativa (Haw.) Celak. Journal of Ethnopharmacology, 73, 445–451.

    CAS  Google Scholar 

  164. Simopoulos, A. P., Norman, A. H., Gillaspy, E. J., & Duke, A. J. (1992). Common purslane: a source of omega-3-fatty acids and antioxidants. American Journal of College Nutrition, 11, 374–382.

    CAS  Google Scholar 

  165. Hussein, A. M. (2010). Purslane extract effects on obesity-induced diabetic rats fed a high-fat diet. Malaysian Journal of Nutrition, 16, 419–429.

    Google Scholar 

  166. El-Gendy, A. M., & Hassan, H. A. (2005). The modulatory role of purslane (Portulaca oleraceae) on age-linked changes in old male rats. Egyptian Journal of Biomedical Science, 18, 255–268.

    Google Scholar 

  167. Barakat, L. A. A., & Mahmoud, R. H. (2011). The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. North American Journal of Medical Sciences, 3, 411–417.

    Google Scholar 

  168. Romero, A., West, K., Zern, T., & Fernandez, M. (2002). The seeds from plantago ovate lower plasma lipids by altering hepatic and bile acid metabolism in Guinea pigs. Journal of Nutrition, 132, 1194–1198.

    CAS  Google Scholar 

  169. Venkateson, N., Devaraj, S., & Devaraj, H. (2003). Increased binding of LDL and VLDL to apo B, E receptors of hepatic plasma membrane of rats treated with fibernat. European Journal of Nutrition, 42, 262–271.

    Google Scholar 

  170. Daniel, M. (2006). Science publishers, Enfield, NH;. Medicinal Plants: Chemistry and Properties; p. 184.

  171. Isin, Y., Ismail, T., Askim, H., & Tijen, D. (2007). Salinity tolerance of (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Journal of Environmental and Experimental Botany, 61, 49–57.

    Google Scholar 

  172. Movahedian, A., Ghannadi, A., & Vashirnia, M. (2007). Hypocholesterolemic effects of purslane extract on serum lipids in rabbits fed with high cholesterol levels. International Journal of Pharmacology, 3, 285–289.

    Google Scholar 

  173. Wurochekke, A., Anthony, A., & Obidah, W. (2008). Biochemical effects on the liver and kidney of rats administered aqueous stem bark extract of Xemenia Americana. African Journal of Biotechnology, 7, 2777–2780.

    Google Scholar 

  174. Shehata, M. S. M., & Soltan, S. A. (2012). The effects of purslane and celery on hypercholesterolemic mice. Journal of World Dairy Food Sciences, 7, 212–221.

    Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaa A. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H.A., El-Gharib, N.E. Obesity and Clinical Riskiness Relationship: Therapeutic Management by Dietary Antioxidant Supplementation—a Review. Appl Biochem Biotechnol 176, 647–669 (2015). https://doi.org/10.1007/s12010-015-1602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1602-6

Keywords

Navigation