Skip to main content
Log in

Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Siderophore production in Anabaena oryzae was investigated under the influence of various levels of iron and other abiotic factors such as pH, temperature, light and different nitrogen sources. Optimization of culture conditions under controlled mechanisms of these abiotic factors lead to the siderophore production in significant amount. Under iron-starved condition, A. oryzae extracellularly releases 89.17 % hydroxymate-type siderophore. Slightly alkaline pH and 30 °C temperature was found stimulatory for the cyanobacterial growth and siderophorogenesis (88.52 % SU and 83.87 % SU, respectively). Excess iron loading had a negative impact on siderophore production along with the alterations in the morphology and growth. Further, scanning electron microphotographs signified that higher concentrations of iron lead to complete damage of the cells and alterations in membrane proteins possibly transporters responsible for exchange of siderophore complex from environment to the cell. SDS-PAGE analysis of whole cell proteins showed overexpression of low molecular weight proteins ranges between 20.1 to 29.0 kDa up to 100-μM iron concentrations. These polypeptides/proteins might be involved in maintaining iron homeostasis by regulating siderophore production. Results suggest that lower concentrations of iron ≤50 μM along with other abiotic factors are stimulatory, whereas higher concentrations (>50 μM) are toxic. Data further suggested that cyanobacterium A. oryzae can serve as a potential biofertilizer especially in iron-rich soil through sequestration by the power of natural Fe(III)-siderophore complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown, C. M., & Trick, C. G. (1992). Response of the cyanobacterium, Oscillatoria tenuis, to low iron environments: the effect on growth rate and evidence for siderophore production. Archives of Microbiology, 157, 349–354.

    Article  CAS  Google Scholar 

  2. Singh, A., Mishra, A. K., Singh, S. S., Sarma, H. K., & Shukla, E. (2008). Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippӧphae salicifolia D. Don. Journal of Basic Microbiology, 48, 104–111.

    Article  CAS  Google Scholar 

  3. Page, M. G. P. (2013). Siderophore conjugates. Annals of the New York Academy of Sciences, 1277, 115–126.

    Article  CAS  Google Scholar 

  4. Ferreira, F., & Straus, N. A. (1994). Iron deprivation in cyanobacteria. Journal of Applied Phycology, 6, 199–210.

    Article  CAS  Google Scholar 

  5. Lammers, P. J., & Sanders-Loehr, J. (1982). Active transport of ferric schizokinen in Anabaena sp. Journal of Bacteriology, 151, 288–294.

    CAS  Google Scholar 

  6. Braun, V., Schäffer, S., Hantke, K., & Trӧger, W. (1990). Regulation of gene expression by Iron. In G. Hauska & R. Thauer (Eds.), The molecular basis of bacterial metabolism (pp. 164–179). New York, USA: Springer.

    Chapter  Google Scholar 

  7. Winkelmann, G. (2002). Microbial siderophore-mediated transport. Biochemical Society Transactions, 30, 691–696.

    Article  CAS  Google Scholar 

  8. Poole, K., & McKay, G. A. (2003). Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Frontiers in Bioscience, 8, 661–686.

    Article  Google Scholar 

  9. Lankford, C. E. (1973). Bacterial assimilation of iron. Critical Reviews in Microbiology, 2, 273–331.

    Article  CAS  Google Scholar 

  10. Boukhalfa, H., & Crumbliss, A. L. (2002). Chemical aspects of siderophore mediated iron transport. Biometals, 15(4), 325–339.

    Article  CAS  Google Scholar 

  11. Neilands, J. B. (1995). Siderophores structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 270(8), 26723–26726.

    Article  CAS  Google Scholar 

  12. Faraldo-Gomez, J. D., & Sansom, M. S. (2003). Acquisition of siderophores in gram-negative bacteria. Nature Reviews of Molecular Cell Biology, 4, 105–116.

    Article  CAS  Google Scholar 

  13. Braun, V., & Hantke, K. (2000). Receptor-mediated bacterial iron transport in transition metals. In G. Winkelmann & C. J. Carrano (Eds.), Microbial metabolism (ch. 3) (pp. 81–116). London: Harwood.

    Google Scholar 

  14. Krewalak, K. D., Peacock, R. S., & Vogel, H. J. (2004). Periplasmic binding proteins involved in bacterial iron uptake. In J. H. Crosa, A. R. Mey, & S. M. Payne (Eds.), Ion transport in bacteria (ch. 8) (pp. 113–132). Washington: ASM Press.

    Google Scholar 

  15. Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27, 637–657.

    Article  CAS  Google Scholar 

  16. Postle, K., & Larsen, R. A. (2007). TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals, 20, 453–465.

    Article  CAS  Google Scholar 

  17. Krewulak, K. D., & Vogel, H. J. (2008). TonB-dependent energy transduction between outer and cytoplasmic membranes. Biochimica et Biophysica Acta, 1778, 1781–1804.

    Article  CAS  Google Scholar 

  18. Ratering, S., & Schnell, S. (2001). Nitrate-dependent iron(II) oxidation in paddy soil. Environmental Microbiology, 3(2), 100–109.

    Article  CAS  Google Scholar 

  19. Whitton, B. A., & Whitton, B. A. (2000). Soils and rice fields. In M. Potts (Ed.), The ecology of cyanobacteria (ch 8) (pp. 233–255). Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  20. Simpson, F. B., & Neilands, J. B. (1976). Siderochromes in cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. Journal of Phycology, 12, 44–48.

    Google Scholar 

  21. Beiderbeck, H., Taraz, K., Budzikiewicz, H., & Walsby, A. E. (2000). Anachelin, the siderophore of the cyanobacterium Anabaena cylindrica CCAP 1403/2A. Zeitschrift fur Naturforschung C: Journal of Biosciences, 55, 681–687.

    CAS  Google Scholar 

  22. Castenholz, R. W. (2001). Phylum BX. Cyanobacteria, oxygenic photosynthetic bacteria. In D. R. Boone & R. W. Castenholz (Eds.), Bergey’s manual of systematic bacteriology (Vol. 1, pp. 473–597). New York: Springer.

    Chapter  Google Scholar 

  23. Goldman, S. J., Lammers, P. J., Berman, M. S., & Sanders-Loehr, J. (1983). Siderophore-mediated iron uptake in different strains of Anabaena sp. Journal of Bacteriology, 156, 1144–1150.

    CAS  Google Scholar 

  24. Bertrand, S., Larcher, G., Landreau, A., Richomme, P., Duval, O., & Bouchara, J. (2009). Hydroxamate siderophores of Scedosporium apiospermum. Biometals, 22, 1019–1029.

    Article  CAS  Google Scholar 

  25. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.

    Article  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, B. J. (1951). Protein measurements with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  27. Payne, S. M. (1994). Detection, isolation and characterization of siderophores. Methods in Enzymology, 235, 329–342.

    Article  CAS  Google Scholar 

  28. Csaky, T. (1948). On the estimation of bound hydroxylamine in biological materials. Acta Chemica Scandinavica, 2, 240–454.

    Article  Google Scholar 

  29. Atkin, C. L., Neilands, J. B., & Phaff, H. (1970). Rhodotorulic acid from species of Rhodospirillum, Rhodotorula, Sporidiobolus and Sporobolomyces. Journal of Bacteriology, 103, 722–733.

    CAS  Google Scholar 

  30. Arnow, L. E. (1937). Colorimetric determination of the components of 3, 4- dihydroxyphenylalanine tyrosine mixtures. Journal of Biological Chemistry, 118, 531–537.

    CAS  Google Scholar 

  31. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

    Article  CAS  Google Scholar 

  32. Mishra, A. K., Shukla, E., & Singh, S. S. (2013). Phylogenetic comparison among the heterocystous cyanobacteria based on a polyphasic approach. Protoplasma, 250, 77–94.

    Article  Google Scholar 

  33. Santos, S., Neto, I. F. F., Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2014). Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions. Applied Biochemistry and Biotechnology, 172(1), 549–560.

    Article  CAS  Google Scholar 

  34. Singh, A., Singh, S. S., Pandey, P. C., & Mishra, A. K. (2010). Attenuation of metal toxicity by frankial siderophores. Toxicological and Environmental Chemistry, 92, 1339–1346.

    Article  CAS  Google Scholar 

  35. Ito, Y., & Butler, A. (2005). Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnology and Oceanography, 50, 1918–1923.

    Article  CAS  Google Scholar 

  36. Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Production of microbial iron chelators (Siderophores) by fluorescent Pseudomonads. Indian Journal of Biotechnology, 4, 484–490.

    CAS  Google Scholar 

  37. Ghassemian, M., & Straus, N. A. (1996). Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. Strain PCC 7942. Microbiology, 142, 1469–1476.

    Article  CAS  Google Scholar 

  38. Hernández, J. A., López-Gomollón, S., Bes, M. T., Fillat, M. F., & Peleato, M. L. (2004). Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiology Letters, 236, 275–282.

    Article  Google Scholar 

  39. Hider, R. C. (1984). Siderophore mediated absorption of iron. Structure and Bonding, 58, 25–87.

    Article  CAS  Google Scholar 

  40. Trick, C. G., & Kerry, A. (1992). Isolation and purification of siderophores produced by cyanobacteria, Synechococcus (Anacystis nidulans R2) sp. and Anabaena variabilis. Current Microbiology, 24, 24 l–245.

    Article  Google Scholar 

  41. Chiadò, A., Varani, L., Bosco, F., & Marmo, L. (2013). Opening study on the development of a New biosensor for metal toxicity based on pseudomonas fluorescens pyoverdine. Biosensors, 3, 385–399.

    Article  Google Scholar 

  42. Fallahzadeh, V., Ahmadzadeh, M., & Sharifi, R. (2010). Growth and pyoverdine production kinetics of Pseudomonas aeruginosa 7NSK2 in an experimental fermentor. Journal of Agricultural Technology, 6(1), 107–115.

    Google Scholar 

  43. Sunda, W., & Huntsman, S. (2003). Effect of pH, light and temperature on Fe-EDTA chelation and Fe hydrolysis in seawater. Marine Chemistry, 84, 35–47.

    Article  CAS  Google Scholar 

  44. Rachid, D., & Ahmed, B. (2005). Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 4, 697–702.

    Article  CAS  Google Scholar 

  45. Drechsel, H., & Jung, G. (1998). Peptide siderophores. Journal of Peptide Science, 4(3), 147–181.

    Article  CAS  Google Scholar 

  46. McMillan, D. G. G., Velasquez, I., Nunn, B. L., Goodlett, D. R., Hunter, K. A., Lamont, I., Sander, S. G., & Cook, G. M. (2010). Acquisition of iron by alkaliphilic Bacillus species. Applied and Environmental Microbiology, 76(20), 6955–6961.

    Article  CAS  Google Scholar 

  47. Hutchins, D. A., Rueter, J. G., & Fish, W. (1991). Siderophore production and nitrogen fixation are mutually exclusive strategies in Anabaena 7120. Limnology and Oceanography, 36, 1–12.

    Article  CAS  Google Scholar 

  48. Kerry, A., Laudenbach, D. E., & Trick, C. G. (1988). Influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. Journal of Phycology, 24, 566–571.

    Article  CAS  Google Scholar 

  49. Averil, B. A., & Orme-Johnson, W. H. (1978). Iron sulphur protein and their synthetic analogue In H. Siegal (Ed.), Metal in biological systems (pp 1387). New York: Marcel Dakker.

  50. Kustka, A., Carpenter, E. J., & Sanudo-Wilhelmy, S. A. (2002). Iron and marine nitrogen fixation: Progress and future directions. Research in Microbiology, 153, 255–262.

    Article  CAS  Google Scholar 

  51. Flores, E., & Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions, 33(1), 164–167.

    Article  CAS  Google Scholar 

  52. Barbeau, K., Zhang, G., Live, D. H., & Butler, A. (2002). Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. Journal of the American Chemical Society, 124, 378–379.

    Article  CAS  Google Scholar 

  53. Borer, P. M., Sulzberger, B., Reichard, P., & Kraemer, S. M. (2005). Effect of siderophores on light – induced dissolution of colloidal iron (III) (hydr)oxides. Marine Chemistry, 93, 179–193.

    Article  CAS  Google Scholar 

  54. Barbeau, K. K., Rue, E. L., Trick, C. G., Bruland, K. W., & Butler, A. (2003). Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography, 48, 1069–1078.

    Article  CAS  Google Scholar 

  55. Amin, S. A., Green, D. H., Mark, H. C., Kupper, F. C., Sunda, W. G., & Carrano, C. J. (2009). Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proceedings of the National Academy of Sciences, 106, 17071–17076.

    Article  CAS  Google Scholar 

  56. Murugappan, R. M., Karthikeyan, M., Aravinth, A., & Alamelu, M. R. (2012). Siderophore mediated iron uptake promotes yeast-bacterial symbiosis. Applied Biochemistry and Biotechnology, 168, 2170–2183.

    Article  CAS  Google Scholar 

  57. Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27, 215–237.

    Article  CAS  Google Scholar 

  58. Cornelis, P., Wei, Q., Andrews, S. C., & Vinckx, T. (2011). Iron homeostasis and management of oxidative stress response in bacteria. Metallomics, 3, 540–549.

    Article  Google Scholar 

Download references

Acknowledgments

We are very thankful to Dr. Alok Kumar Srivastava (Senior Scientist) and Mr. Manish Roy (Technical Assistant), National Bureau of Agriculturally Important Microorganisms, Mau nath Bhanjan, UP, India, for providing scanning electron microscopy facility. Central Instrumental Laboratory, Department of Botany, BHU for technical assistance in spectroscopic experiments. The Head, Department of Botany, BHU, Varanasi, India, is gratefully acknowledged for providing laboratory facilities.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Mishra.

Additional information

Anumeha Singh, holds a MSc degree, Banaras Hindu University.

Dr. Arun Kumar Mishra, holds a PhD degree, is a Professor of Banaras Hindu University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Mishra, A.K. Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae . Appl Biochem Biotechnol 176, 372–386 (2015). https://doi.org/10.1007/s12010-015-1581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1581-7

Keywords

Navigation