Skip to main content

Advertisement

Log in

Highly Selective Electrochemical Determination of Taxol Based on ds-DNA-Modified Pencil Electrode

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this research, TiO2/ZrO2 nanocomposite has been prepared using sol-gel method. The TiO2/ZrO2 composite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). A sensitive electrochemical biosensor is also presented for the determination of Taxol based on ds-DNA decorated multiwall carbon nanotubes-TiO2/ZrO2–chitosan-modified pencil electrode (ds-DNA-MWNTs-TiO2/ZrO2–CHIT-PGE). The UV spectroscopic data and differential pulse voltammetry revealed that there is a strong interaction between ds-DNA and Taxol. The groove binding of Taxol to ds-DNA helix has been characterized by a red shift (less than 8 nm) in wavelength and the decrease in the differential pulse voltammetry oxidation signal intensity of the Taxol at pencil graphite electrode (PGE) after its interaction with ds-DNA. Finally, a pretreated PGE modified with ds-DNA-MWNTs-TiO2/ZrO2–CHIT was tested in order to determine Taxol content in the solution. The dynamic range was from 0.7 to 1874.0 nmol L−1 with a detection limit of 0.01 nmol L−1. This sensing platform was successfully applied for the determination of Taxol in pharmaceutical and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao, C. N. R., Satishkumar, B. C., Govindaraj, A., & Nath, M. (2001). Nanotubes. ChemPhysChem, 2, 78–105.

    Article  CAS  Google Scholar 

  2. Baughman, R. H., Zakhidov, A., & de Heer, W. A. (2002). Carbon nanotubes–the route toward applications. Science, 297, 787–792.

    Article  CAS  Google Scholar 

  3. Ensafi, A. A., Khoddami, E., Rezaei, B., & Karimi-Maleh, H. (2010). p-Aminophenol–multiwall carbon nanotubes–TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids and Surfaces B, 81, 42–49.

    Article  CAS  Google Scholar 

  4. Adekunle, A. S., Agboola, B. O., Pillay, J., & Ozoemena, K. I. (2010). Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sensors and Actuators B, 148, 93–102.

    Article  CAS  Google Scholar 

  5. Dong, Y., & Zheng, J. (2014). A nonenzymatic l-cysteine sensor based on SnO2-MWCNTs nanocomposites. Journal of Molecular Liquids, 196, 280–284.

    Article  CAS  Google Scholar 

  6. Liu, Z., Zhai, H., Chen, Z., Zhou, Q., Liang, Z., & Su, Z. (2014). Simultaneous determination of orange G and orange II in industrial wastewater by a novel Fe2O3/MWCNTs-COOH/OP modified carbon paste electrode. Electrochimica Acta, 136, 370–376.

    Article  CAS  Google Scholar 

  7. Zhang, L., Xu, L., He, J., & Zhang, J. (2014). Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochimica Acta, 117, 192–201.

    Article  CAS  Google Scholar 

  8. Mehdinia, A., Ziaei, E., & Jabbari, A. (2014). Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochimica Acta, 130, 512–518.

    Article  CAS  Google Scholar 

  9. Huo, D., Li, Q., Zhang, Y., Hou, C., & Lei, Y. (2014). A highly efficient organophosphorus pesticides sensor based on CuO nanowires–SWCNTs hybrid nanocomposite. Sensors and Actuators B, 199, 410–417.

    Article  CAS  Google Scholar 

  10. Liu, Y., Tang, J., Chen, X., & Xin, J. H. (2005). Decoration nanotubes with chitosan. Carbon, 43, 3178–3180.

    Article  CAS  Google Scholar 

  11. Pauliukaite, R., Ghica, M. E., Fatibello-Filho, O., & Brett, C. M. A. (2009). Comparative study of different cross-linking agents for the immobilization of functionalized carbon nanotubes within a chitosan film supported on a graphite− epoxy composite electrode. Analytical Chemistry, 81, 5364–5372.

    Article  CAS  Google Scholar 

  12. Li, J., Liu, Q., Liu, Y., Liu, S., & Yao, S. (2005). DNA biosensor based on chitosan film doped with carbon nanotubes. Analytical Biochemistry, 346, 107–114.

    Article  CAS  Google Scholar 

  13. Ensafi, A. A., Amini, M., & Rezaei, B. (2014). Impedimetric DNA-biosensor for the study of anti-cancer action of mitomycin C: comparison between acid and electroreductive activation. Biosensors & Bioelectronics, 59, 282–288.

    Article  CAS  Google Scholar 

  14. Saville, M. W., Lietzau, J., Pluda, J. M., Wilson, W. H., Humphrey, R. W., Feigel, E., Steinberg, S. M., & Broder, S. (1995). Treatment of HIV-associated Kaposi’s sarcoma with paclitaxel. The Lancet, 346, 26–28.

    Article  CAS  Google Scholar 

  15. Mehdinia, A., Kazemi, S. H., Bathaie, S. Z., Alizadeh, A., Shamsipur, M., & Mousavi, M. F. (2008). Electrochemical studies of DNA immobilization onto the azide-terminated monolayers and its interaction with taxol. Analytical Biochemistry, 375, 331–338.

    Article  CAS  Google Scholar 

  16. Holgado, T. M., Quintana, M. C., & Pinilla, J. M. (2003). Electrochemical study of taxol (paclitaxel) by cathodic stripping voltammetry: determination in human urine. Microchemical Journal, 74, 99–104.

    Article  Google Scholar 

  17. Cheng, W. X., Peng, D. Y., Lu, C. H., & Fang, C. W. (2008). Direct electrochemical behavior of the Cysteamine/DNA/SWNTs-film-modified Au electrode and its interaction with taxol. Russian Journal of Electrochemistry, 44, 1052–1057.

    Article  CAS  Google Scholar 

  18. Gowda, J. I., & Nandibewoor, S. T. (2014). Electrochemical characterization and determination of paclitaxel drug using graphite pencil electrode. Electrochimica Acta, 116, 326–333.

    Article  CAS  Google Scholar 

  19. Zhang, Y., Cheng, W., Li, S., & Li, N. (2006). Direct electron transfer of hemoglobin on DDAB/SWNTs film modified Au electrode and its interaction with Taxol. Colloids and Surfaces, A, 286, 33–38.

    Article  CAS  Google Scholar 

  20. Yu, Y., & Li, Q. (2001). Studies on the interaction of paclitaxel with tubulin by an electrochemical method. Analytica Chimica Acta, 436, 147–152.

    Article  CAS  Google Scholar 

  21. Gowda, J. I., & Nandibewoor, S. T. (2014). Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian Journal of Pharmaceutical Sciences, 9, 42–49.

    Article  Google Scholar 

  22. Ghiaci, M., Aghaei, H., & Abbaspur, A. (2008). Size-controlled synthesis of ZrO"2-TiO"2 nanoparticles prepared via reverse micelle method. Materials Research Bulletin, 43, 1255–1262.

    Article  CAS  Google Scholar 

  23. Wang, L., Xiong, H., Zhang, X., & Wang, S. (2009). Electrochemical behaviors of nicotine and its interaction with DNA. Electrochemistry Communications, 11, 2129–2132.

    Article  CAS  Google Scholar 

  24. Ghiaci, M., Abbaspur, A., & Kalbasi, R. J. (2005). Vapor-phase Beckmann rearrangement of cyclohexanone oxime over H 3 PO 4/ZrO 2–TiO 2. Applied Catalysis A, 287, 83–88.

    Article  CAS  Google Scholar 

  25. Ensafi, A. A., Amini, M., & Rezaei, B. (2013). Biosensor based on ds-DNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole. Colloids and Surfaces, B, 109, 45–51.

    Article  CAS  Google Scholar 

  26. Kim, J. Y., Kim, C. S., Chang, H. K., & Kim, T. O. (2011). Synthesis and characterization of N-doped TiO"2/ZrO"2 visible light photocatalysts. Advanced Powder Technology, 22, 443–448.

    Article  CAS  Google Scholar 

  27. Tekeli, S., Akçimen, A., Gürdal, O., & Gürü, M. (2007). Microstructural and electrical conductivity properties of cubic zirconia doped with various amount of titania. Journal of Achievements in Materials and Manufacturing Engineering, 25, 39–42.

    Google Scholar 

  28. Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19.

    Article  CAS  Google Scholar 

  29. Ensafi, A. A., Heydari-Bafrooei, E., & Amini, M. (2012). DNA-functionalized biosensor for riboflavin based electrochemical interaction on pretreated pencil graphite electrode. Biosensors & Bioelectronics, 31, 376–381.

    Article  CAS  Google Scholar 

  30. Sparreboom, A., de Bruijn, P., Nooter, K., Loos, W. J., Stoter, G., & Verweij, J. (1998). Determination of paclitaxel in human plasma using single solvent extraction prior to isocratic reversed-phase high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 705, 159–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taei, M., Hassanpour, F., Salavati, H. et al. Highly Selective Electrochemical Determination of Taxol Based on ds-DNA-Modified Pencil Electrode. Appl Biochem Biotechnol 176, 344–358 (2015). https://doi.org/10.1007/s12010-015-1578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1578-2

Keywords

Navigation