Skip to main content
Log in

Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and 1H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, L., Hudgins, W. R., Shack, S., Yin, M. Q., & Samid, D. (1995). Cinnamic acid: a natural product with potential use in cancer intervention. International Journal of Cancer, 62, 345–350.

    Article  CAS  Google Scholar 

  2. Humphreys, J. M., & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5, 224–229.

    Article  CAS  Google Scholar 

  3. Boudet, A. M., Kajita, S., Grima-Pettenati, J., & Goffner, D. (2003). Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends in Plant Science, 8, 576–581.

    Article  CAS  Google Scholar 

  4. Mi, J., Sun, Z. H., Zhong, M. H., Yang, Y. H., Chen, T., Xiong, G. J., Luo, H., & Qi, X. Q. (2012). Predictive factors of chronic thromboembolic pulmonary hypertension in patients with acute pulmonary thromboembolism. Zhonghua Xin Xue Guan Bing Za Zhi, 40, 497–501.

    Google Scholar 

  5. Lone, R., Shuab, R., & Koul, K. K. (2014). Role of cinnamate and cinnamate derivatives in pharmacology. Global Journal of Pharmacology., 8, 328–335.

    CAS  Google Scholar 

  6. Yang, Y. H., Raku, T., Song, E., Park, S. H., Yoo, D., Park, H. Y., Kim, B. G., Kim, H. J., Lee, S. H., Kim, H. S., & Tokiwa, Y. (2012). Lipase catalyzed reaction of L-ascorbic acid with cinnamic acid esters and substituted cinnamic acids. Biotechnology and Bioprocess Engineering, 17, 50–54.

    Article  Google Scholar 

  7. Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2, 270–278.

    Article  Google Scholar 

  8. Bradley, J.-C., Neylon, C., Williams, A., Guha, R., Hooker, B., Lang, A. S., Freisen, B., Bohinski, T., Bulger, D., & Federici, M. (2009). Open notebook science challenge: Solubilities of organic compounds in organic solvents. ed. ONS Books.

  9. East, A., Jaffe, M., & Zhang, Y. (2006). Ultraviolet absorber for cosmetics and polymeric materials. Google Patents.

  10. Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radical Biology and Medicine, 13, 435–448.

    Article  CAS  Google Scholar 

  11. Leinen, H.-T., Gregori, D., Pujol, M., & Carbó, M. R. (2003). Water, silica polishing agent and humectant comprised of sorbitol, glycerol and polyethylene glycol; transparent; remains in gel form on toothbrush. Google Patents.

  12. Degn, P., & Zimmermann, W. (2001). Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnology and Bioengineering, 74, 483–491.

    Article  CAS  Google Scholar 

  13. Raku, T., & Tokiwa, Y. (2003). Chemoenzymatic synthesis of fucose- or rhamnose-branched polymer. Macromolecular Bioscience, 3, 151–156.

    Article  CAS  Google Scholar 

  14. Sabally, K., Karboune, S., St-Louis, R., & Kermasha, S. (2006). Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids. Journal of the American Oil Chemists Society, 83, 101–107.

    Article  CAS  Google Scholar 

  15. Xu, B., & Chang, S. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72, S159–S166.

    Article  CAS  Google Scholar 

  16. Choi, J., Oh, J., Hwang, I., Kim, S., Jeon, J., Lee, B., Kim, J., Kim, T., & Cho, K. (2003). Application and high throughput screening of DPPH free radical scavenging activity by using 96-well plate. The Korean Journal of Pesticide Science, 7, 92–99.

    Google Scholar 

  17. Sanna, D., Delogu, G., Mulas, M., Schirra, M., & Fadda, A. (2011). Determination of free radical scavenging activity of plant extracts through DPPH assay: an EPR and UV–Vis study. Food Analytical Methods, 5, 759–766.

    Article  Google Scholar 

  18. Artamonov, A., Burkovskaya, L., Nigmatullina, F., & Dzhiembaev, B. Z. (1997). Synthesis of monoesters of D-sorbitol and aromatic acids. Chemistry of Natural Compounds, 33, 571–573.

    Article  CAS  Google Scholar 

  19. Jakovetic, S. M., Jugovic, B. Z., Gvozdenovic, M. M., Bezbradica, D. I., Antov, M. G., Mijin, D. Z., & Knezevic-Jugovic, Z. D. (2013). Synthesis of aliphatic esters of cinnamic acid as potential lipophilic antioxidants catalyzed by lipase B from Candida antarctica. Applied Biochemistry and Biotechnology, 170, 1560–1573.

    Article  CAS  Google Scholar 

  20. Song, Q. X., & Wei, D. Z. (2002). Study of Vitamin C ester synthesis by immobilized lipase from Candida sp. Journal of Molecular Catalysis B-Enzymatic, 18, 261–266.

    Article  CAS  Google Scholar 

  21. Poojari, Y., Beemat, J. S., & Clarson, S. J. (2013). Enzymatic synthesis of poly(epsilon-caprolactone): thermal properties, recovery, and reuse of lipase B from Candida antarctica immobilized on macroporous acrylic resin particles. Polymer Bulletin, 70, 1543–1552.

    Article  CAS  Google Scholar 

  22. Arcos, J. A., Bernabe, M., & Otero, C. (1998). Quantitative enzymatic production of 6-O-acylglucose esters. Biotechnology and Bioengineering, 57, 505–509.

    Article  CAS  Google Scholar 

  23. Tarahomjoo, S., & Alemzadeh, I. (2003). Surfactant production by an enzymatic method. Enzyme and Microbial Technology, 33, 33–37.

    Article  CAS  Google Scholar 

  24. Arcos, J., Bernabe, M., & Otero, C. (1998). Quantitative enzymatic production of 1, 6-diacyl fructofuranoses. Enzyme and Microbial Technology, 22, 27–35.

    Article  CAS  Google Scholar 

  25. Degn, P., & Zimmermann, W. (2001). Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnology and Bioengineering, 74, 483–491.

    Article  CAS  Google Scholar 

  26. Otto, R. T., Bornscheuer, U. T., Scheib, H., Pleiss, J., Syldatk, C., & Schmid, R. D. (1998). Lipase-catalyzed esterification of unusual substrates: synthesis of glucuronic acid and ascorbic acid (vitamin C) esters. Biotechnology Letters, 20, 1091–1094.

    Article  CAS  Google Scholar 

  27. Letizia, C., Cocchiara, J., Lapczynski, A., Lalko, J., & Api, A. (2005). Fragrance material review on cinnamic acid. Food and Chemical Toxicology, 43, 925–943.

    Article  CAS  Google Scholar 

  28. Choo, W. S., & Birch, E. (2009). Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids. Lipids, 44, 145–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors follow the Instructions for Authors to make sure their manuscript complies to the ethical rules applicable for this journal. The study was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10004690), by KOPRI (PE14030), and by the R& D Program of MOTIE/KEIT (10048350) and “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Isolation and identification of rhizobacteria for indoor VOCs removal, Project No. 010205022014)” Rural Development Administration, Republic of Korea. In addition, this research was supported by the 2014 KU Brain Pool of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Additional information

Jung-Ho Kim and Shashi Kant Bhatia contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

HPLC chromatogram of each compound with their retention time, i.e., RT = 3.4 for 6-O-cinnamoyl-sorbitol, 4.3 for cinnamic acid, and 64.6 min for vinyl cinnamate (DOC 76 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Bhatia, S.K., Yoo, D. et al. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters. Appl Biochem Biotechnol 176, 244–252 (2015). https://doi.org/10.1007/s12010-015-1570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1570-x

Keywords

Navigation