Skip to main content

Advertisement

Log in

Expression, Purification and Characterisation of Secreted Esterase Rv2525c from Mycobacterium tuberculosis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rv2525c from Mycobacterium tuberculosis belongs to the domain of unknown function (DUF) 1906 superfamily, but it also contains the motif G-X-S-X-G, the consensus active site sequence of the ester/lipid family. Biochemical analysis indicated that the mature Rv2525c protein is secreted. The discovery and characterisation of novel enzymes secreted by M. tuberculosis are vital for understanding the pathogenesis of the most important human bacterial pathogen. The proteome of M. tuberculosis contains over 400 potentially secreted proteins, of which the majority remain uncharacterised. In this study, we cloned and expressed the rv2525c gene in Escherichia coli and purified the recombinant protein using a three-step process (affinity chromatography, ion exchange chromatography, gel filtration chromatography), obtaining more than 99 % pure protein. Mass spectrometry was performed to confirm that the purified protein was Rv2525c. Circular dichroism spectroscopy results showed that its conformation was stable at pH ranging from 6.0 to 8.0 and at temperatures ≤40 °C. Moreover, we tested the esterase activity using p-nitrophenyl esters (C2, C4, C6, C8, C12, C14, C16). This enzyme exhibited broad substrate acceptance, preferentially hydrolysing p-nitrophenyl butyrate (C4) at pH 7.0 and 37 °C. The dynamic activity test demonstrated that the optimal conditions were pH 8.0 and 38 °C. Site-directed mutagenesis studies revealed that Gly 113, Ser 115 and Gly 117 residues play catalytic roles in Rv2525c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Honer zu Bentruo, K., & Russell, D. G. (2001). Mycobacterial persistence: adaptation to a changing environment. Trends in Microbiology, 9, 597–605.

    Article  Google Scholar 

  2. Dye, C., Sheele, S., Dolin, P., Pathania, V., & Raviglione, M. C. (1999). Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. The Journal of the American Medical Association, 282, 677–686.

    Article  CAS  Google Scholar 

  3. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., 3rd, Tekaia, F., Badcock, K., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., Mclean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajadream, M. A., Rogers, J., Rutter, S., Seeger, K., Seeger, K., Skelton, K., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., & Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393, 537–544.

    Article  CAS  Google Scholar 

  4. Camus, J. C., Pryor, M. J., Mèdigue, C., & Cole, S. T. (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 148, 2967–2973.

    CAS  Google Scholar 

  5. Sassetti, C. M., & Rubin, E. T. (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA, 100, 12989–12994.

    Article  CAS  Google Scholar 

  6. Lamichhane, G., Tyagi, S., & Bishai, W. R. (2005). Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infection and Immunity, 73, 2533–2540.

    Article  CAS  Google Scholar 

  7. West, N. P., Chow, F. M. E., Randall, E. J., Wu, J., Chen, J., Ribeiro, J. M. C., & Britton, W. J. (2009). Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. The Journal of the Federation of American Societies for Experimental Biology, 23, 1694–1704.

    Article  CAS  Google Scholar 

  8. Beatty, W. L., & Russell, D. G. (2000). Identification of Mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infection and Immunity, 68, 6997–7002.

    Article  CAS  Google Scholar 

  9. Armstrong, J. A., & Hart, P. D. (1971). Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. Journal of experimental medicine, 134, 713–740.

    Article  CAS  Google Scholar 

  10. Russell, D. G. (2001). Mycobacterium tuberculosis: here today, and here tomorrow. Nature Reviews Molecular Cell Biology, 2, 569–577.

    Article  CAS  Google Scholar 

  11. Saint-Joanis, B., Demangel, C., Jackson, M., Brodin, P., Marsollier, L., Boshoff, H., & Cole, S. T. (2006). Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases β-lactam susceptibility and virulence. Journal of Bacteriology, 188, 6669–6679.

    Article  CAS  Google Scholar 

  12. Heikinheimo, P., Goldman, A., Jeffries, C., & Ollis, D. L. (1999). Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Structure, 7, R141–R146.

    Article  CAS  Google Scholar 

  13. Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews Microbiology, 53, 315–351.

    Article  CAS  Google Scholar 

  14. Nardini, M., & Dijkstra, B. W. (1999). Alpha/beta hydrolase fold enzymes: the family keeps growing. Current Opinion Structural Biology, 9, 732–737.

    Article  CAS  Google Scholar 

  15. Bornscheuer, U. T. (2002). Microbial carboxyl esterase: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 26, 73–81.

    Article  CAS  Google Scholar 

  16. Vorderwulbecke, T., Kieslich, K., & Erdmann, H. (1992). Comparison of lipases by different assays. Enzyme Microbial Technology, 14, 631–639.

    Article  Google Scholar 

  17. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  18. Levisson, M., Van der Oost, J., & Kengen, S. W. M. (2009). Carboxylic ester hydrolases from hyperthermophiles. Extremophiles, 13, 567–581.

    Article  CAS  Google Scholar 

  19. Iijima, N., Tanaka, S., & Ota, Y. (1998). Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry, 18, 59–69.

    Article  CAS  Google Scholar 

  20. Lopez-Lopez, S., Nolasco, H., & Vega-Villasante, F. (2003). Characterization of digestive gland esterase-lipase activity of juvenile redclaw crayfish Cherax quadricarinatus. Comparative Biochemistry and Physiology Part B Biochemistry Molecular Biology, 135, 337–347.

    Article  Google Scholar 

  21. Neves Petersen, M. T., Fojan, P., & Petersen, S. B. (2001). How do lipases and esterases work: the electrostatic contribution. Journal of Biotechnology, 85, 115–147.

    Article  CAS  Google Scholar 

  22. Rashamuse, K., Magomani, V., Ronneburg, T., & Brady, D. (2009). A novel family VII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin. Applied Microbiology Biotechnology, 83, 491–500.

    Article  CAS  Google Scholar 

  23. Guo, J. B., Zheng, X. D., Xu, L. P., Liu, Z. Y., Xu, K. H., Li, S. T., Wen, T. Y., Liu, S. G., & Pang, H. (2010). Characterization of a Novel Esterase Rv0045c from Mycobacterium tuberculosis. PLoS One, 5, 1–7.

    Google Scholar 

  24. Zhang, M., Wang, J. D., Li, Z. F., Xie, J., Yang, Y. P., Zhong, Y., & Wang, H. H. (2005). Expression and characterizationg of the carboxyl esterase Rv3487c from Mycobacterium tuberculosis. Protein Expression and Purification, 42, 59–66.

    Article  CAS  Google Scholar 

  25. Canaan, S., Maurin, D., Chahinian, H., Pouilly, B., Durousseau, C., Frassinetti, F., Calvo, L. S., Cambillau, C., & Bourne, Y. (2004). Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. European Journal of Biochemistry, 271, 3953–3961.

  26. Saravanan, P., Avinash, H., Dubey, V. K., & Patra, S. (2012). Targeting essential cell wall lipase Rv3802c for potential therapeutics against tuberculosis. Journal Molecular Graphics and Modelling, 38, 235–242.

    Article  CAS  Google Scholar 

  27. Walburger, A., Koul, A., Ferrari, G., Nguyen, L., Prescianotto-Baschong, C., Huygen, K., Klebl, B., Thompson, C., Bacher, G., & Pieters, J. (2004). Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 304, 1800–1804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (973 program, no. 2012CB518800), the National Natural Science Foundation of China (nos. 31201920 and 31272538), and the State Key Laboratory of Veterinary Biotechnology Research Fund (no. SKLVBP201417).

Conflict of Interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Pang or Siguo Liu.

Additional information

Guanghui Dang and Liping Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, G., Chen, L., Li, Z. et al. Expression, Purification and Characterisation of Secreted Esterase Rv2525c from Mycobacterium tuberculosis . Appl Biochem Biotechnol 176, 1–12 (2015). https://doi.org/10.1007/s12010-015-1555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1555-9

Keywords

Navigation