Skip to main content

Advertisement

Log in

Engineering Tobacco to Remove Mercury from Polluted Soil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36’s root can reach up to 251 μg/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu, G. H., & Cao, S. S. (2010). Mercury and cadmium contamination of irrigation water, sediment, soil and shallow groundwater in a waste water-irrigated field in Tianjin. China Bulletin Environmental Contamination and Toxicology, 84, 336–341.

    Article  CAS  Google Scholar 

  2. Cachada, A., Rodrigues, S. M., Mieiro, C., da Ferreira Silva, E., Pereira, E., & Duarte, A. C. (2009). Controlling factors and environmental implications of mercury contamination in urban and agricultural soils under a long-term influence of a chlor-alkali plant in the North–West Portugal. Environmental Geology, 57, 91–98.

    Article  CAS  Google Scholar 

  3. Dunlevy, S. R., Singleton, D. R., & Aitken, M. D. (2013). Biostimulation reveals functional redundancy of anthracene-degrading bacteria in polycyclic aromatic hydrocarbon-contaminated soil. Environmental Engineering Science, 30(11), 697–705.

    Article  CAS  Google Scholar 

  4. Sorkhoh, N. A., Ali, N., Al-Awadhi, H., Dashti, N., Al-Mailem, D. M., Eliyas, M., & Radwan, S. S. (2010). Phytoremediation of mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercuryremoval. Ecotoxicology and Environmental Safety, 73(8), 1998–2003.

    Article  CAS  Google Scholar 

  5. Francesca, P., Gianniantonio, P., Meri, B. E. T., Paolo, A., & Leonardo, P. (2011). Mercury mobilization in a contaminated Industrial soil for phytoremediation. Communications in Soil Science and Plant Analysis, 42(22), 2767–2777.

    Article  Google Scholar 

  6. Hussein, H. S., Ruiz, O. N., Terry, N., & Daniell, H. (2007). Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environmental Science & Technology, 41(24), 8439–8446.

    Article  CAS  Google Scholar 

  7. Kiyono, M., Uno, Y., Omura, T., & Pan-Hou, H. (2000). Role of merT and merP from Pseudomona K-62 plasmid pmr26 in the transport of phenylmercury. Biological & Pharmaceutical Bulletin, 23, 279–282.

    Article  CAS  Google Scholar 

  8. Kiyono, M., Omura, T., Fujimori, H., & Pan-Hou, H. (1995). Organomercurial resistance determinants in Pseudomonas K-62 are present on two plasmids. Archives of Microbiology, 163, 242–247.

    Article  CAS  Google Scholar 

  9. Kiyono, M., & Pan-Hou, H. (2006). Genetic engineering of bacteria for environmental remediation of mercury. Journal of Health Science, 52(3), 199–204.

    Article  CAS  Google Scholar 

  10. Osborn, A. M., Bruce, K. D., Strike, P., & Ritchie, D. A. (1997). Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Reviews, 19, 239–262.

    Article  CAS  Google Scholar 

  11. Ruiz, O. N., Hussein, H. S., Terry, N., & Daniell, H. (2003). Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiology, 132(3), 1344–1352.

    Article  CAS  Google Scholar 

  12. Shafiul, H., Zeyaullah, M., Nabi, G., Srivastava, P. S., & Ali, A. (2010). Transgenic tobacco plant expressing environmental E.coli merA gene for enhanced volatilization of ionic mercury. Journal of Micriobiology and Biotechnolology, 20(5), 917–924.

    Article  CAS  Google Scholar 

  13. Nagata, T., Ishikawa, C., Kiyono, M., & Pan-Hou, H. (2006). Accumulation of mercury in transgenic tobacco expressing bacterial polyphosphate. Biological & Pharmaceutical Bulletin, 29(12), 2350–2353.

    Article  CAS  Google Scholar 

  14. Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. Journal of Bioscience and Bioengineering, 100(6), 593–599.

    Article  CAS  Google Scholar 

  15. Sun, H., Lang, Z., Zhu, L., & Huang, D. (2012). Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. Plant Cell Reports, 31, 1877–1887.

    Article  CAS  Google Scholar 

  16. Weigel D and Glazebrook J. (2002). Arabidopsis, a laboratory manual. Cold Spring Harbor Laboratory Press. page 123-124.

  17. Nagata, T., Nakamura, A., Akizawa, T., & Pan-Hou, H. (2009). Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biological & Pharmaceutical Bulletin, 32(9), 1491–1495.

    Article  CAS  Google Scholar 

  18. Park, J., Song, W., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., Lee, T. G., Martinoia, E., & Lee, Y. (2012). The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 69, 278–288.

    Article  CAS  Google Scholar 

  19. Bock, R. (2013). Strategies for metabolic pathway engineering with multiple transgenes. Plant Molecular Biology. doi:10.1007/s11103-013-0045-0.

    Google Scholar 

  20. Francois, I. E., Hemelrijck, W. V., & Aerts, A. M. (2004). Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Science, 166(1), 113–121.

    Article  CAS  Google Scholar 

  21. Kato, J., Yamamoto, T., Yamada, K., & Ohtake, H. (1993). Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene, 137(2), 237–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 41201309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The sequence of merT-merP-merB1-merB2-ppk. The LP4/2A sequence is underlined and shown in italics. The ppk sequence is shown in lowercase. The merT, merP, merB1 and merB2 sequences are shown in capital letters. The Not I site is shown in boldface letters. (DOC 27 kb)

Supplementary Fig. 2

The merT-merP-merB1-merB2-pcs1 sequence. The pcs1 sequence is shown in lowercase. LP4/2A is shown in italics and is underlined. The merT, merP, merB1 and merB2 sequences are shown in capital letters. The Not I site is shown in boldface letters. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Wei, F., Yang, Y. et al. Engineering Tobacco to Remove Mercury from Polluted Soil. Appl Biochem Biotechnol 175, 3813–3827 (2015). https://doi.org/10.1007/s12010-015-1549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1549-7

Keywords

Navigation