Skip to main content
Log in

Multistep Synthesis of UDP-Glucose Using Tailored, Permeabilized Cells of E. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We constructed and applied a recombinant, permeabilized Escherichia coli strain for the multistep synthesis of UDP-glucose. Sucrose phosphorylase (E.C. 2.4.1.7) of Leuconostoc mesenteroides was over expressed and the pgm gene encoding for phosphoglucomutase (E.C. 5.4.2.2) was deleted in E. coli to yield the E. coli JW 0675-1 SP strain. The cells were permeabilized with the detergent Triton X-100 at 0.05 % v/v. The synthesis of UDP-glucose with permeabilized cells was then optimized with regard to pH, cell density during the synthesis and growth phase during cell harvest, metal cofactor, other media components, and temperature. In one configuration sucrose, phosphate, UMP, and ATP were used as substrates. At pH 7.8, 27 mg/ml cell dry weight, cell harvest during the early stationary phase of growth and Mn2+ as cofactor a yield of 37 % with respect to UMP was achieved at 33 °C. In a second step, ATP was regenerated by feeding glucose and using only catalytic amounts of ATP and NAD+. A UDP-glucose yield of 60 % with respect to UMP was obtained using this setup. With the same setup but without addition of external ATP, the yield was 54 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Kesseler, M., Sturmer, R., & Zelinski, T. (2004). Industrial methods for the production of optically active intermediates. Angewandte Chemie-International Edition, 43, 788–824.

    Article  CAS  Google Scholar 

  2. Kuriata-Adamusiak, R., Strub, D., & Lochynski, S. (2012). Application of microorganisms towards synthesis of chiral terpenoid derivatives. Applied Microbiology and Biotechnology, 95, 1427–1436.

    Article  CAS  Google Scholar 

  3. Eikmanns, B. J., Eggeling, L., & Sahm, H. (1993). Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 64, 145–163.

    Article  Google Scholar 

  4. Chae, H. S., Kim, K. H., Kim, S. C., & Lee, P. C. (2010). Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Applied Biochemistry and Biotechnology, 162, 2333–2344.

    Article  CAS  Google Scholar 

  5. Elling, L., & Bülter, T. (1999). Enzymatic synthesis of nucleotide sugars. Glycoconjugate Journal, 16, 147–159.

    Article  Google Scholar 

  6. Ko, J., Shin, H.-S., Kim, Y., Lee, D.-S., & Kim, C.-H. (1996). Biotransformation of uridine monophosphate (ump) and glucose to uridine diphosphate-glucose (udpg) by candida saitoana kctc7249 cells. Applied Biochemistry and Biotechnology, 60, 41–48.

    Article  CAS  Google Scholar 

  7. Felix, H. (1982). Permeabilized cells. Analytical Biochemistry, 120, 211–234.

    Article  CAS  Google Scholar 

  8. Niklas, J., Melnyk, A., Yuan, Y. B., & Heinzle, E. (2011). Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. Analytical Biochemistry, 416, 218–227.

    Article  CAS  Google Scholar 

  9. Heinzle, E., Weyler, C., Krauser, S., & Blaß, L. K. (2013). Directed multistep biocatalysis using tailored permeabilized cells. In A.-P. Zeng (Ed.), Fundamentals and application of new bioproduction systems (pp. 185–234). Berlin Heidelberg: Springer.

    Google Scholar 

  10. Kondo, A., Liu, Y., Furuta, M., Fujita, Y., Matsumoto, T., & Fukuda, H. (2000). Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme and Microbial Technology, 27, 806–811.

    Article  CAS  Google Scholar 

  11. Krauser, S., Kiefer, P., and Heinzle, E. (2012) Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli, ChemCatChem, 4, 786–788.

  12. Goedl, C., Schwarz, A., Minani, A., & Nidetzky, B. (2007). Recombinant sucrose phosphorylase from leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of [alpha]-d-glucose 1-phosphate. Journal of Biotechnology, 129, 77–86.

    Article  CAS  Google Scholar 

  13. Yuan, Y., & Heinzle, E. (2009). Permeabilization of Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity measurement. Comptes Rendus Chimie, 12, 1154–1162.

    Article  CAS  Google Scholar 

  14. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2.

  15. Serina, L., Bucurenci, N., Gilles, A. M., Surewicz, W. K., Fabian, H., Mantsch, H. H., Takahashi, M., Petrescu, I., Batelier, G., & Barzu, O. (1996). Structural properties of ump-kinase from escherichia coli: modulation of protein solubility by pH and UTP. Biochemistry, 35, 7003–7011.

    Article  CAS  Google Scholar 

  16. Slavova-Azmanova, C. E. M. S. N. ( 2007) Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria, The Journal of Biological Chemistry 282.

  17. van den Broek, L. A. M., van Boxtel, E. L., Kievit, R. P., Verhoef, R., Beldman, G., & Voragen, A. G. J. (2004). Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 65, 219–227.

    Article  Google Scholar 

  18. Vainonen, J. P., Vorobyeva, N. N., Rodina, E. V., Nazarova, T. I., Kurilova, S. A., Skoblov, J. S., & Avaeva, S. M. (2005). Metal-free PPi activates hydrolysis of MgPPi by an Escherichia coli inorganic pyrophosphatase. Biochemistry-Moscow, 70, 69–78.

    Article  CAS  Google Scholar 

  19. Meyer, P., Evrin, C., Briozzo, P., Joly, N., Barzu, O., & Gilles, A. M. (2008). Structural and functional characterization of escherichia coli UMP kinase in complex with its allosteric regulator GTP. Journal of Biological Chemistry, 283, 36011–36018.

    Article  CAS  Google Scholar 

  20. Glaser, L., Melo, A., & Paul, R. (1967). Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. Journal of Biological Chemistry, 242, 1944.

    CAS  Google Scholar 

  21. Proudfoot, M., Kuznetsova, E., Brown, G., Rao, N. N., Kitagawa, M., Mori, H., Savchenko, A., & Yakunin, A. F. (2004). General enzymatic screens identify three new nucleotidases in Escherichia coli. Journal of Biological Chemistry, 279, 54687–54694.

    Article  CAS  Google Scholar 

  22. Goldraij, A., & Curtino, J. A. (1996). M-glycogenin, the protein moiety of Neurospora crassa proteoglycogen, is an auto- and transglucosylating enzyme. Biochemical and Biophysical Research Communications, 227, 909–914.

    Article  CAS  Google Scholar 

  23. Atkinson, M. R., Kamberov, E. S., Weiss, R. L., & Ninfa, A. J. (1994). Reversible uridylylation of the Escherichia coli PII signal-transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NTrC). Journal of Biological Chemistry, 269, 28288–28293.

    CAS  Google Scholar 

  24. Inoue, H., Nojima, H., & Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Christiane Goedl and Bernd Nidetzky for supplying pQE 30-LmSPase plasmid used for the creation of the E. coli JW 0675-1 SP strain. We acknowledge the support by BMBF (Federal Ministry of Education and Research, Project MECAT, FKZ 031P7238 within the initiative “Biotechnologie 2020+: Basistechnologien für eine nächste Generation biotechnologischer Verfahren.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Heinzle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyler, C., Heinzle, E. Multistep Synthesis of UDP-Glucose Using Tailored, Permeabilized Cells of E. coli . Appl Biochem Biotechnol 175, 3729–3736 (2015). https://doi.org/10.1007/s12010-015-1540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1540-3

Keywords

Navigation