Skip to main content

Advertisement

Log in

Characterization of a Potential β-Lactamase Inhibitory Metabolite from a Marine Streptomyces sp. PM49 Active Against Multidrug-Resistant Pathogens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Actinobacteria is a prolific producer of complex natural products; we isolated a potential marine Streptomyces sp. PM49 strain from Bay of Bengal coastal area of India. The strain PM49 exhibited highly efficient antibacterial properties on multidrug-resistant pathogens with a zone of inhibition of 14–17 mm. SSF was adopted for the production of the secondary metabolites from PM49 with ISP2; utilizing agricultural wastes for compound extraction was also attempted. Bioactive fraction of Rf value 0.69 resolved using chloroform and ethyl acetate (1:1, v/v) was obtained and subjected to further analysis. Based on UV, IR, ESI-MS, and 1H and 13C NMR spectral analysis, it was revealed that the compound is closely similar to cyslabdan with a molecular mass of 467.66 corresponding to the molecular formula C25H41NO5S. ESBL and MBL production was screened in the hospital test isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus. PCR amplification in the phenotypically positive strains was positive for bla IMP, bla SHV, bla CTX-M, and mec genes. The β-lactamase enzyme from tested strains had cephalosporinase activity with a 31-kDa protein and isolated compound from the strain possessing β-lactamase inhibitory potential. MIC of the active fraction was 16–32 μg/ml on ATCC strains; the ceftazidime and meropenem sensitive and resistant test strains showed MIC of 64–256 μg/ml. The Streptomyces sp. PM49 aerial mycelium was rectiflexibile; the 16S rRNA showed 99 % identity with Streptomyces rochei and submitted at Genbank with accession no JX904061.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, K., Chong, Y., Shin, H. B., Kim, Y. A., Yong, D., & Yum, J. H. (2001). Modified Hodge and EDTA disk synergy test to screen metallo beta lactamases producing strains of Pseudomonas spp and Acinetobacter spp. Clinical Microbiology and Infection, 7, 88–91.

    Article  CAS  Google Scholar 

  2. Maninder, K., & Aruna, A. (2013). Occurrence of CTX-M, SHV and the TEM genes among the extended spectrum â-lactamase producing isolates of Enterobacteriaceae in a tertiary care hospital of North India. Journal of Clinical Diagnostic Research, 7(4), 642–645.

    Google Scholar 

  3. Andrea, M. H., Kristine, M. H., Marion, S. H., Vernon, E. A., & Robert, A. B. (2002). Amino acid substitutions at Ambler position Gly238 in the SHV-1 β-lactamase: exploring sequence requirements for resistance to penicillins and cephalosporins. Antimicrobial Agents and Chemotherapy, 46(12), 3971–3977.

    Article  Google Scholar 

  4. Wright, G. D. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Review, 57, 1451–1470.

    Article  CAS  Google Scholar 

  5. Fenical, W., & Jensen, P. R. (2006). Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chemical Biology, 2, 666–673.

    Article  CAS  Google Scholar 

  6. Wu, S. J., Fotso, S., Li, F., Qin, S., & Laatsch, H. (2007). Amorphane sesquiterpenes from a marine Streptomyces sp. Journal of Natural Products, 70, 304–306.

    Article  CAS  Google Scholar 

  7. Atsushi, F., Yong, P. K., Hideaki, H., Kazuro, S., Hiroshi, T., & Satoshi, O. (2008). Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04-0144 II. Biological activities. Journal of Antibiotics, 61(1), 7–10.

    Article  Google Scholar 

  8. Eccleston, G. P., Brooks, P. R., & Kurtboke, D. I. (2008). The occurrence of bioactive Micromonosporae in aquatic habitats of the Sunshine Coast in Australia. Marine Drugs, 6, 243–261.

    Article  CAS  Google Scholar 

  9. Yilmaz, E. B., Yavuz, M., & Kizil, M. (2008). Molecular characterization of rhizosphere soil Streptomycetes isolated from indigenous Turkish plants and their antimicrobial activity. World Journal of Microbiology and Biotechnology, 24, 1461–1470.

    Article  CAS  Google Scholar 

  10. Kelman, D., Kashman, Y., Rosenberg, E., Kushmaro, A., & Loya, Y. (2006). Antimicrobial activity of red sea corals. Marine Biology, 149, 357–363.

    Article  CAS  Google Scholar 

  11. Usha, R., Ananthaselvi, P., Venil, C. K., & Palaniswamy, M. (2010). Antimicrobial and antiangiogenesis activity of Streptomyces parvulus KUAP106 from mangrove soil. European Journal of Biological Sciences, 2, 77–83.

    Google Scholar 

  12. Sahin, N., & Ugur, A. (2003). Investigation of the antimicrobial activity of some Streptomyces isolates. Turkish Journal of Biology, 27, 73–78.

    Google Scholar 

  13. Augustine, S., Bhavasar, S. P., & Kapadnis, B. P. (2005). A non polyene antifungal antibiotic from Streptomyces albidofalvus PU 23. Journal of Bioscience, 30, 201–211.

    Article  CAS  Google Scholar 

  14. Lee, K., Lee, W. G., Uh, Y., Ha, G. Y., Chong, Y., et al. (2003). VIM and IMP type metallo-beta-lactamase producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emergency Infectious Diseases, 9(7), 868–871.

    Article  CAS  Google Scholar 

  15. Zhang, Z., Li, M., Zhou, D., Ruan, F., Lu, Y., et al. (2006). Detection of extended-spectrum b-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrobial Agents Chemotherapy, 50(9), 2990–2995.

    Article  Google Scholar 

  16. Perez-Perez, F. J., & Hanson, N. D. (2002). Detection of plasmid-mediated AmpC ß-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40, 2153–2162.

    Article  CAS  Google Scholar 

  17. Wang, Z., & Benkovic, S. J. (1998). Purification, characterization, and kinetic studies of a soluble Bacteroides fragilis metallo-β-lactamase that provides multiple antibiotic resistance. Journal of Biological Chemistry, 273(35), 22402–22408.

    Article  CAS  Google Scholar 

  18. Falagas, M. E., & Bliziotis, I. A. (2007). Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? International Journal of Antimicrobial Agents, 29, 630–636.

    Article  CAS  Google Scholar 

  19. Feng, Y. C., Siu, L. K., Chang, P. F., Min Hua, H., & Monto, H. (2001). Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrobial Agents and Chemotherapy, 45(9), 2407–2413.

    Article  Google Scholar 

  20. Andrews, J. M. (2001). Determination of minimum inhibitory concentration. Journal of Antimicrobial and Chemothereapy, 48(Suppl. 1), 5–16.

    Article  CAS  Google Scholar 

  21. Sibanda, T., & Okoh, A. I. (2008). In vitro antibacterial regimes of crude aqueous and acetone extracts of Garcinia kola seeds. Journal of Biological Science, 8, 149–154.

    Article  Google Scholar 

  22. Sathish Kumar, S.R., & Kokati, V.B.R. (2012). In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus. Asia Pacific Journal of Tropical Biomedicine, S1802–S1807.

  23. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  24. De Pestel, D. D., Benninger, M. S., Danziger, L., LaPlante, K. L., May, C., Luskin, A., Pichichero, M., & Hadley, J. A. (2003). Cephalosporin use in treatment of patients with penicillin allergies. Journal of American Pharmaceutical Association, 48, 530–540.

    Google Scholar 

  25. Valan Arasu, M., Duraipandiyan, V., & Ignacimuthu, S. (2013). Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp. AP-123 and its cytotoxic effect. Chemosphere, 90(2), 479–487.

    Article  Google Scholar 

  26. Zhonghui, Z., Wei, Z., Yaojian, H., Zhiyuan, Y., Jun, L., Huirong, C., & Wenjin, S. (2000). Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiology Letters, 188, 87–91.

    Article  Google Scholar 

  27. Gupta, M. D., & Kulkarni, P. R. (2002). A study of antifungal antibiotic production by Streptomyces chattanoogensis MTCC 3423 using full factorial design. Letters in Applied Microbiology, 35, 22–26.

    Article  Google Scholar 

  28. El-Naggar, M. Y., EL-Assar, S. A., & Abdul Gawad, S. M. (2009). Solid state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. Journal of Microbiology and Biotechnology, 19(5), 468–473.

    Article  CAS  Google Scholar 

  29. Remya, M., & Vijayakumar, R. (2008). Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Journal of Medicine and Biology, 15, 13–19.

    Google Scholar 

  30. Sekiguchi, M., Shiraish, N., Kobinata, K., Kudo, T., Yamaguchi, I., Osada, H., & Isono, K. (2007). RS-22A and C: new macrolide antibiotics from Streptomyces violaceusniger, taxonomy, fermentation, isolation and biological activities. Journal of Antibiotics, 48(4), 289–292.

    Google Scholar 

  31. Joseph, G. P., Stephane, B., Jean, M. F., Pierre, N., Bathelemy, N., Anatole, A., et al. (2007). Screening of some medicinal plants from cameroon for beta-lactamase inhibitory activity. Phytotherapy Research. Phytotherapy Research, 21(3), 284–287.

    Article  Google Scholar 

  32. Masashi, T., Masaaki, Y., Seiko, O., Yasushi, T., Yasutake, H., Yuzuru, M., Ayumi, S., Hironori, F., Yasushi, O., & Junichi, K. (2005). Brasilibactin A, a cytotoxic compound from actinomycete Nocardia brasiliensis. Journal of Natural Products, 68(3), 462–464.

    Article  Google Scholar 

  33. Siddhartha, R. C., Raymond, E. K., David, N. B., & Wu Kuand, Y. (1996). Methicillin-resistant Staphylococcus aureus: S. Antimicrobial Agents and Chemotherapy, 40(9), 2075–2079.

    Google Scholar 

  34. Mark, S. B. (2005). Natural products to drugs: natural product derived compounds in clinical trials. Natural Products Reports, 22, 162–195.

    Article  Google Scholar 

  35. Venkata, R., Murali, K., Murali, Y. N., & Sri Rami, R. D. (2012). Novel pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiology Research, 167(6), 346–351.

    Article  Google Scholar 

  36. Sathish Kumar, S.R., & Kokati, V.B.R. (2012). In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus. Asia Pacific Journal of Tropical Biomedicine, S1802-S1807.

  37. Ekrem, K., & Mettem, Y. C. (2006). Comparison of staphylococcal beta-lactamase detection. FABAD Journal of Pharmaceutical Science, 31, 79–84.

    Google Scholar 

  38. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, 465–469.

    Article  Google Scholar 

  39. Julain, D., & Dorothy, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the microbiology staff members and physicians of the tertiary care hospital, Bangalore, for helping us in collecting the samples and providing ATCC strains, and they also acknowledge the technicians for their help. The authors also thank the Vice-Chancellor and Registrar of Periyar University, Salem, for their support and encouragement. This work was supported by the Indian Council of Medical Research [ICMR] New Delhi, India (ICMR letter no. 5/8/5/24/9/2011—ECD-I, dt.19.12.11).

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balagurunathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanthi, J., Senthil, A., Gopikrishnan, V. et al. Characterization of a Potential β-Lactamase Inhibitory Metabolite from a Marine Streptomyces sp. PM49 Active Against Multidrug-Resistant Pathogens. Appl Biochem Biotechnol 175, 3696–3708 (2015). https://doi.org/10.1007/s12010-015-1538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1538-x

Keywords

Navigation