Skip to main content

Advertisement

Log in

Xylitol Bioproduction in Hemicellulosic Hydrolysate Obtained from Sorghum Forage Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the biotechnological production of xylitol from sorghum forage biomass. The yeast Candida guilliermondii was cultivated in hemicellulosic hydrolysates obtained from biomass of three sorghum varieties (A, B, and C). First, the biomass was chemically characterized and subjected to dilute acid hydrolysis to obtain the hemicellulosic hydrolysates which were vacuum-concentrated and detoxified with activated charcoal. The hemicellulosic hydrolysates (initial pH 5.5) were supplemented with nutrients, and fermentations were conducted in 125-mL Erlenmeyer flasks containing 50 mL medium, under 200 rpm, at 30 °C for 96 h. Fermentations were evaluated by determining the parameters xylitol yield (Y P/S ) and productivity (QP), as well as the activities of the enzymes xylose reductase (XR) and xylitol dehydrogenase (XDH). There was no significant difference among the three varieties with respect to the contents of cellulose, hemicellulose, and lignin, although differences were found in the hydrolysate fermentability. Maximum xylitol yield and productivity values for variety A were 0.35 g/g and 0.16 g/L.h−1, respectively. It was coincident with XR (0.25 U/mg prot) and XDH (0.17 U/mg prot) maximum activities. Lower values were obtained for varieties B and C, which were 0.25 and 0.17 g/g for yield and 0.12 and 0.063 g/L.h-1 for productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ravella, S. R., Gallagher, J., Fish, S., & Prakasham, R. S. (2012). Overview on commercial production of xylitol, economic analysis and market trends. In S. S. Silva & A. K. Chandel (Eds.), D-Xylitol fermentative production, application and commercialization (1st ed., pp. 291–306). Heidelberg: Springer, Berlin.

    Google Scholar 

  2. Mäkinen, K. K. (2011). Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Medical Principles and Practice, 20(4), 303–320.

    Article  Google Scholar 

  3. Sarrouh, B., & Silva, S. S. (2013). Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Applied Biochemistry and Biotechnology, 169(7), 2101–2110.

    Article  CAS  Google Scholar 

  4. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Anjum Murtaza, M. (2013). Xylitol, a review on bio-production, application, health benefits and related safety issues. Critical Reviews in Food Science and Nutrition (just-accepted).

  5. Mussatto, S. I. (2012). Application of xylitol in food formulations and benefits for health. In S. S. Silva & A. K. Chandel (Eds.), D-Xylitol fermentative production, application and commercialization (1st ed., pp. 309–323). Heidelberg: Springer, Berlin.

    Google Scholar 

  6. Radmerikhi, S., Formantes, B., Fajardo, K. R., & Azul, E. (2013). Antimicrobial effect of different xylitol concentrations on Streptococcus mutans and Lactobacillus acidophilus count. Journal of Restorative Dentistry, 1(3), 95.

    Article  Google Scholar 

  7. Alves, F. R., Neves, M. A., Silva, M. G., Rocas, I. N., & Siqueira, J. J. F. (2013). Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. Brazilian Dental Journal, 24(3), 224–229.

    Article  Google Scholar 

  8. Azarpazhooh, A., Limeback, H., Lawrence, H. P., & Shah, P. S. (2011). Xylitol for preventing acute otitis media in children up to 12 years of age. Cochrane Database of Systematic Reviews, 11. doi:10.1002/14651858.CD007095.pub2.

  9. Vernacchio, L., Corwin, M. J., Vezina, R. M., Pelton, S. I., Feldman, H. A., Coyne-Beasley, T., & Mitchell, A. A. (2014). Xylitol syrup for the prevention of acute otitis media. Pediatrics, 133(2), 289–295.

    Article  Google Scholar 

  10. Islam, M. S. (2011). Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. Journal of Medicinal Food, 14(5), 505–511.

    Article  CAS  Google Scholar 

  11. Kishore, P., Kehlenbrink, S., Hu, M., Zhang, K., Gutierrez-Juarez, R., Koppaka, S., El-Maghrabi, M. R., & Hawkins, M. (2012). Xylitol prevents NEFA-induced insulin resistance in rats. Diabetologia, 55(6), 1808–1812.

    Article  CAS  Google Scholar 

  12. Mushtaq, Z., Imran, M., Salim-ur-Rehman, Zahoor, T., Ahmad, R. S., & Arshad, M. U. (2014). Biochemical perspectives of xylitol extracted from indigenous agricultural by product mung bean (Vigna radiata) hulls in a rat model. Journal of the Science of Food and Agriculture, 94(5), 969–974.

    Article  CAS  Google Scholar 

  13. Sato, H., Ide, Y., Nasu, M., & Numabe, Y. (2011). The effects of oral xylitol administration on bone density in rat femur. Odontology, 99(1), 28–33.

    Article  CAS  Google Scholar 

  14. Campus, G., Cagetti, M. G., Sale, S., Petruzzi, M., Solinas, G., Strohmenger, L., & Lingström, P. (2013). Six months of high-dose xylitol in high-risk caries subjects a 2-year randomised, clinical trial. Clinical Oral Investigations, 17(3), 785–791.

    Article  Google Scholar 

  15. Kumar, S., Sogi, S. H., & Indushekar, K. R. (2013). Comparative evaluation of the effects of xylitol and sugar-free chewing gums on salivary and dental plaque pH in children. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 31(4), 240–244.

    Article  Google Scholar 

  16. Park, E., Na, H. S., Kim, S. M., Wallet, S., Cha, S., & Chung, J. (2014). Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human thp-1-derived macrophages infected with Porphyromonas gingivalis. Journal of Periodontology, 85(6), 212–223.

    Article  Google Scholar 

  17. Takahashi, K., Mashiko, T., & Akiba, Y. (2000). Effect of dietary concentration of xylitol on growth in male broiler chicks during immunological stress. Poultry Science, 79(5), 743–747.

    Article  CAS  Google Scholar 

  18. Rowe, S. M., Miller, S., & Sorscher, E. J. (2005). Cystic fibrosis. New England Journal of Medicine, 352(19), 1992–2001.

    Article  CAS  Google Scholar 

  19. Su, B., Wu, M., Lin, J., & Yang, L. (2013). Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnology Letters, 35(11), 1781–1789.

    Article  CAS  Google Scholar 

  20. Canilha, L., Rodrigues, R. C. L. B., Antunes, F. A. F., Chandel, A. K., Milessi, T. S. S., Felipe, M. G. A., & Silva, S. S. (2013). Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In A. K. Chandel, & S. Silvério da Silva (Eds.), Sustainable degradation of lignocellulosic biomass - Techniques, applications and commercialization, vol 1, 1st edn. (pp. 15–45). New York: Intech.

  21. Werpy, T. A., Holladay, J. E., & White, J. F. (2004). Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas (No. PNNL-14808). Richland, WA: Pacific Northwest National Laboratory (PNNL).

  22. Khattab, S. M. R., Saimura, M., & Kodaki, T. (2013). Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP + -dependent xylitol dehydrogenase. Journal of Biotechnology, 165(3), 153–156.

    Article  CAS  Google Scholar 

  23. Silva, D. D. V., de Arruda, P. V., Vicente, F. M. C. F., Sene, L., da Silva, S. S., & de Almeida Felipe, M. D. G. (2014). Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Annals of Microbiology, 1–8. doi:10.1007/s13213-014-0907-y.

  24. Freitas Branco, R., dos Santos, J. C., & da Silva, S. S. (2011). A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenergy, 35(7), 3241–3246.

    Article  Google Scholar 

  25. Rubio, C., Latina, C., & Navarro, A. (2012). Fermentation of corncob hydrolysate for xylitol production. BioTecnología, 16(3), 48–63.

    Google Scholar 

  26. Ling, H., Cheng, K., Ge, J., & Ping, W. (2011). Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnology, 28(6), 673–678.

    Article  CAS  Google Scholar 

  27. Canilha, L., Carvalho, W., & Felipe, M. D. G. A. (2008). Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian Journal of Microbiology, 39(2), 333–336.

    Article  Google Scholar 

  28. Zhuang, J., Liu, Y., Wu, Z., Sun, Y., & Lin, L. (2009). Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. BioResources, 4(2), 674–686.

    CAS  Google Scholar 

  29. Oberoi, H. S., Vadlani, P. V., Brijwani, K., Bhargav, V. K., & Patil, R. T. (2010). Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochemistry, 45(8), 1299–1306.

    Article  CAS  Google Scholar 

  30. Zhang, Q., Li, Y., Xia, L., & Liu, Z. (2014). Enhanced xylitol production from statistically optimized fermentation of cotton stalk hydrolysate by immobilized Candida tropicalis. Chemical and Biochemical Engineering Quarterly, 28(1), 87–93.

    CAS  Google Scholar 

  31. Miura, M., Watanabe, I., Shimotori, Y., Aoyama, M., Kojima, Y., & Kato, Y. (2013). Microbial conversion of bamboo hemicellulose hydrolysate to xylitol. Wood Science and Technology, 47(3), 515–522.

    Article  CAS  Google Scholar 

  32. Lima, F. C. S., Silva, F. L. H., Gomes, J. P., Muniz, M. B., & Santiago, A. M. (2014) Evaluation of cashew apple bagasse for xylitol production. In Transport phenomena and drying of solids and particulate materials, vol 48 (pp. 179–204). Springer International Publishing.

  33. Prakasham, R. S., Nagaiah, D., Vinutha, K. S., Uma, A., Chiranjeevi, T., Umakanth, A. V., SrinivasaRao, P., & Yan, N. (2014). Sorghum biomass: a novel renewable carbon source for industrial byproducts. Biofuels, 5(2), 159–174.

    Article  CAS  Google Scholar 

  34. Shoemaker, C. E., & Bransby, D. I. (2010). The role of sorghum as a bioenergy feedstock. In R. Braun, D. L. Karlen & D. Johnson (Eds.), Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six US regions, Proceeedings of the Sustainable Feedstocks for Advance Biofuels Workshop (pp. 28-30), Atlanta.

  35. Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhvava, H. D., Riera-Lizarazu, O., Brown, P. J., Acharva, C. B., Mitchell, S. E., Harriman, J., Glaubitz, J. C., Buckler, E. S., & Kresovich, S. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy Science of the United State of Amerika, 110(2), 453–458.

    Article  CAS  Google Scholar 

  36. Herrera, A., Téllez-Luis, S. J., González-Cabriales, J. J., Ramı́rez, J. A., & Vázquez, M. (2004). Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. Journal of Food Engineering, 63(1), 103–109.

    Article  Google Scholar 

  37. Mehmood, S., Gulfraz, M., Rana, N. F., Ahmad, A., Ahring, B. K., Minhas, N., & Malik, M. F. (2009) Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems. African Journal of Biotechnology 8(12), 2857–2865.

  38. McIntosh, S., & Vancov, T. (2012). Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 92, 421–428.

    Article  Google Scholar 

  39. Sene, L., Arruda, P. V., Oliveira, S. M. M., & Felipe, M. G. A. (2011). Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian Journal of Microbiology, 42(3), 1141–1146.

    Article  CAS  Google Scholar 

  40. Sepúlveda-Huerta, E., Tellez-Luis, S. J., Bocanegra-García, V., Ramírez, J. A., & Vázquez, M. (2006). Production of detoxified sorghum straw hydrolysates for fermentative purposes. Journal of the Science of Food and Agriculture, 86(15), 2579–2586.

    Article  Google Scholar 

  41. Ruiz, E., Romero, I., Moya, M., Cara, C., Vidal, J. D., & Castro, E. (2013). Dilute sulfuric acid pretreatment of sunflower stalks for sugar production. Bioresource Technology, 140, 292–298.

    Article  CAS  Google Scholar 

  42. Gouveia, E. R., Nascimento, R. T., & Souto-Maior, A. M. (2009). Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova, 32, 1500–1503.

    Article  CAS  Google Scholar 

  43. Tellez-Luis, S. J., Ramırez, J. A., & Vázquez, M. (2002). Mathematical modelling of hemicellulosic sugar production from sorghum straw. Journal of Food Engineering, 52(3), 285–291.

    Article  Google Scholar 

  44. Rodrigues, R. C. L. B., Felipe, M. G. A., Silva, J. B., Vitolo, M., & Gómez, P. V. (2001). The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Brazilian Journal of Chemical Engineering, 18(3), 299–311.

    Article  CAS  Google Scholar 

  45. Marton, J. M., Felipe, M. G. A., Almeida Silva, J. B. and Pessoa Junior, A. (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Brazilian Journal of Chemical Engineering 23(1), 9–21.

  46. Silva, D. D. V., & Felipe, M. G. A. (2006). Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. Journal of Chemical Technology and Biotechnology, 81, 1294–1300.

    Article  Google Scholar 

  47. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  48. Camargo, D., & Sene, L. (2014). Production of ethanol from the hemicellulosic fraction of sunflower meal biomass. Biomass Conversion and Biorefinery, 4(2), 87–93.

    Article  CAS  Google Scholar 

  49. Sarkar, N., & Aikat, K. (2013). Kinetic study of acid hydrolysis of rice straw. ISRN Biotechnology, (1).

  50. Kim, T. H., Jeon, Y. J., Oh, K. K., & Kim, T. H. (2013). Production of furfural and cellulose from barley straw using acidified zinc chloride. Korean Journal of Chemical Engineering, 30(6), 1339–1346.

    Article  CAS  Google Scholar 

  51. Canilha, L., Almeida e Silva, J. B., Felipe, M. G. A., & Carvalho, W. (2003). Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor. Biotechnology Letters, 25, 1811–1814.

    Article  CAS  Google Scholar 

  52. Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Almeida e Silva, J. B. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and Microbial Techology, 40(1), 17–24.

  53. Zhang, J., Geng, A., Yao, C., Lu, Y., & Li, Q. (2012). Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresource Technology, 121, 369–378.

    Article  CAS  Google Scholar 

  54. Cortez, D. V., & Roberto, I. C. (2010). Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii. Bioresource Technology, 101(6), 1858–1865.

    Article  CAS  Google Scholar 

  55. Felipe, M. G. A. (2004). Biotechnological production of xylitol from lignocellulosic materials. In B. C. Saha & K. Hayashi (Eds.), Lignocellulose Biodegradation, vol. 889 (pp. 300–315). Washington: American Chemical Society.

  56. Dönmez, G., & Aksu, Z. (2001). Bioaccumulation of copper (II) and níquel (II) by the non-adapted and adaptedet growing Candida guilliermondii. Water Research, 35(6), 1425–1432.

    Article  Google Scholar 

  57. Rodrigues, R. C. L. B., Felipe, M. G. A., Roberto, I. C., & Vitolo, M. (2003). Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulose hydrolysate at controlled pH values. Bioprocess and Biosystems Engineering, 26(02), 103–107.

    Article  CAS  Google Scholar 

  58. Rodrigues, R. C. L. B., Sene, L., Matos, G. S., Roberto, I. C., Pessoa, A., Jr., & Felipe, M. G. A. (2006). Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Current Microbiology, 53, 53–59.

    Article  CAS  Google Scholar 

  59. Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., & Mancilha, I. M. (1995) Effect of acid acetic acid on xylose fermentation to xylitol by Candida guilliermondii. Journal of Basic Microbiology 35(3), 171-177.

  60. Felipe, M. G. A., Vitolo, M., Mancilha, I. M., & Silva, S. S. (1997). Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production: effect of pH. Biomass Bioenergy, 13(1–2), 11–14.

    Article  CAS  Google Scholar 

  61. Silva, D. D. V., Felipe, M. G. A., Mancilha, I. M., Luchese, R. H., & Silva, S. S. (2004). Inhibitory effect of acetic acid on bioconversion of xylose in xylitol by Candida guilliermondii in sugarcane bagasse hydrolysate. Brazilian Journal of Microbiology, 35, 248–254.

    Article  CAS  Google Scholar 

  62. Fritsche, W., & Hofrichter, M. (2000). Aerobic degradation by microorganims. In H.-J. Rehm & G. Reed (Eds.), Biotechnology: Environmental Processes II, vol 11, 2nd edn. (pp. 145–167). Weinheim: Wiley-VCH Verlag GmbH. doi:10.1002/9783527620951.ch6.

  63. Wang, G., Wen, J., Li, H., & Qiu, C. (2009). Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. Journal of Industrial Microbiology and Biotechnology, 36(6), 809–814.

    Article  CAS  Google Scholar 

  64. Phalgune, U. D., Rajamohanan, P. R., Gaikwad, B. G., Varma, R. J., & George, S. (2013). Biodegradation of phenol by the yeast Candida tropicalis: an investigation by NMR spectroscopy. Applied Biochemistry and Biotechnology, 169(7), 2029–2037.

    Article  CAS  Google Scholar 

  65. Arruda, P. V., & Felipe, M. G. A. (2009). Role of glycerol addition on xylose to xylitol bioconversion by Candida guilliermondii. Current Microbiology, 58(3), 274–278.

    Article  CAS  Google Scholar 

  66. Sene, L., Felipe, M. G. A., Silva, S. S., & Vitolo, M. (2001). Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Applied Biochemistry and Biotecnology, 91–93, 671–680.

    Article  Google Scholar 

  67. Alves, L. A., Vitolo, M., Felipe, M. G. A., & Silva, J. B. A. (2002). Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design. Applied Biochemistry and Biotechnology, 98–100, 403–413.

    Article  Google Scholar 

  68. Rosa, S. A. M., Felipe, M. G. A., Silva, S., & Vitolo, M. (1998). Xylose reductase production by Candida guilliermondii. Applied Biochemistry and Biotechnology, 70–72, 127–135.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank EMBRAPA Maize and Sorghum (Sete Lagoas) for donating the cultivars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Camargo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, D., Sene, L., Variz, D.I.L.S. et al. Xylitol Bioproduction in Hemicellulosic Hydrolysate Obtained from Sorghum Forage Biomass. Appl Biochem Biotechnol 175, 3628–3642 (2015). https://doi.org/10.1007/s12010-015-1531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1531-4

Keywords

Navigation