Skip to main content

Advertisement

Log in

Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To diminish the time required for some diagnostic assays including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP) and also a visual detection protocol on the basis of npt II and GUS genes in transgenic tobacco plants were used. Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum leaf discs was performed with plant transformation vector of pBI 121. From kanamycin-resistant plants selected by their antibiotic resistance, four plants were selected for DNA isolation. Presence of the transgene was confirmed in the transformants by PCR and LAMP. In this regard, all LAMP and PCR primers were designed on the basis of the gene sequences of npt II and GUS. The LAMP assay was applied for direct detection of gene marker from plant samples without DNA extraction steps (direct LAMP assay). Also, a novel colorimetric LAMP assay for rapid and easy detection of npt II and GUS genes was developed here, its potential compared with PCR assay. The LAMP method, on the whole, had the following advantages over the PCR method: easy detection, high sensitivity, high efficiency, simple manipulation, safety, low cost, and user friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gasser, C. G., & Fraley, T. T. (1989). Genetically engineering plants for crop improvements. Science, 244, 1293–1299.

    Article  CAS  Google Scholar 

  2. Walden, R., & Schell, J. (1990). Techniques in plant molecular biology, progress and problems. European Journal of Biochemistry, 192, 563–567.

    Article  CAS  Google Scholar 

  3. Budar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 115, 303–313.

    Google Scholar 

  4. Kim, Y. G., Sharmin, S. A., Alam, I., Kim, K. H., Kwon, S. Y., Sohn, J. H., Kim, S. H., Liu, G., & Lee, B. H. (2013). Agrobacterium-mediated transformation of reed (Phragmites communis Trinius) using mature seed-derived calli. GCB Bioenergy, 5, 73–80.

    Article  CAS  Google Scholar 

  5. Subramanyam, K., Subramanyam, K., Sailaja, K. V., Srinivasulu, M., & Lakshmidevi, K. (2011). Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports, 30, 425–436.

    Article  CAS  Google Scholar 

  6. Hood, E. E., Gelvin, S. B., Melcher, L. S., & Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  7. Shrawat, A. K., Becker, D., & Lorz, H. (2007). Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Science, 172, 281–290.

    Article  CAS  Google Scholar 

  8. Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3, 358.

    Article  Google Scholar 

  9. Anklam, E., Gadani, F. P., Heinze, P., Pijnenburg, H., & Eede, G. V. D. (2002). Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. European Food Research Technology, 214, 3–26.

    Article  CAS  Google Scholar 

  10. Goodall, G. J., & Filipowicz, W. (1991). Different effects of intron nucleotide composition and secondary structure and pre-mRNA splicing in monocot and dicot plants. The EMBO Journal, 10, 2635–2644.

    CAS  Google Scholar 

  11. Nap, J. P., Bijvoet, J., & Stiekema, J. (1992). Biosafety of kanamycin-resistant transgenic plants. Transgenic Research, 1, 239–249.

    Article  CAS  Google Scholar 

  12. Sundar, I. K., & Sakthivel, N. (2008). Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 165, 1698–1716.

    Article  CAS  Google Scholar 

  13. Cubero, J., Martinez, M. C., Llop, P., & Lopez, M. M. (1999). A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumours. Journal of Applied Microbiology, 86, 591–602.

    Article  CAS  Google Scholar 

  14. Michel, M. F., Brasileiro, A. C. M., Deprierreux, C., Otten, L., Delmotte, F., & Jouanin, L. (1990). Identification of different Agrobacterium strains isolated from the same forest nursery. Applied and Environmental Microbiology, 56, 3537–3545.

    CAS  Google Scholar 

  15. Holmes, B., & Roberts, P. (1981). The classification and nomenclature of Agrobacteria. Journal of Applied Bacteriology, 50, 443–467.

    Article  Google Scholar 

  16. Shirasu, K., Koukolikova-Nicola, Z., Hohn, B., & Kado, C. I. (1994). An inner-membrane associated protein essential for T-DNA transfer from Agrobacterium tumefaciens to plant exhibits ATPase activity and similarities to conjugative transfer genes. Molecular Microbiology, 11, 581–588.

    Article  CAS  Google Scholar 

  17. Nesme, X., Ponsonnet, C., Picard, C., & Normand, P. (1992). Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiology Letters, 101, 189–196.

    Article  CAS  Google Scholar 

  18. Furukawa, K., Hasunama, K., Hatanaka, S., & Hayashi, T. (1984). Detection of tumor inducing plasmid DNA sequence in Agrobacterium tumefaciens by DNA–DNA hybridization. Radioisotopes, 33, 543–546.

    Article  CAS  Google Scholar 

  19. Khatodia, S., Kharb, P., Batra, P., & Chowdhury, V. K. (2014). Real time PCR based detection of transgene copy number in transgenic chickpea lines expressing Cry1Aa3 and Cry1Ac. International Journal of Pure and Applied Bioscience, 2, 100–105.

    Google Scholar 

  20. Ahangarzadeh, S., Daneshvar, M. H., Rajabi-Memari, H., Galehdari, H., & Alamisaied, K. (2012). Cloning, transformation and expression of human interferon α2b gene in tobacco plant (Nicotiana tabacum cv. xanthi). Jundishapur Journal of Natural Pharmaceutical Products, 7, 111–116.

    Article  Google Scholar 

  21. Curtis, I. S., Power, J. B., Hedden, P., Phillips, A., Lowe, K. C., Ward, D. A., & Davey, M. R. (2000). Transformation and characterization of transgenic plants of Solanum dulcamara L. incidence of transgene silencing. Annals of Botany, 86, 63–71.

    Article  CAS  Google Scholar 

  22. Bagheri, K., Jalali-Javaran, M., Mahboudi, F., Moeini, A., & Zebarjadi, A. (2010). Expression of human interferon gamma in Brassica napus seeds. African Journal of Biotechnology, 9, 5066–5072.

    CAS  Google Scholar 

  23. Ogras, T. T., & Gozukirmizi, N. (1999). Expression and inheritance of GUS gene in transgenic tobacco plants. Transgenic Journal of Botany, 23, 297–302.

    Google Scholar 

  24. Suratman, A., Ughude, J. O., & Sismindari. (2013). Detection of nptII gene and 35SCaMV promoter in tomatoes (Solanum lycopersicum L.). Journal of Food Pharmaceutical Sciences, 1, 10–13.

    Article  Google Scholar 

  25. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63.

    Article  CAS  Google Scholar 

  26. Iwamoto, T., Sonobe, T., & Hayashi, K. (2003). Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology, 41, 2616–2622.

    Article  CAS  Google Scholar 

  27. Mori, Y., & Notomi, T. (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 15, 62–69.

    Article  CAS  Google Scholar 

  28. Hadersdorfer, J., Neumuller, M., Treutter, D., & Fischer, T. (2011). Fast and reliable detection of Plum pox virus in woody host plants using the Blue LAMP protocol. The Annals of Applied Biology, 159, 456–466.

    Article  CAS  Google Scholar 

  29. Cardoso, T. C., Ferrari, H. F., Bregano, L. C., Silva-Frade, C., Rosa, A. C., & Andrade, A. L. (2010). Visual detection of turkey coronavirus RNA in tissues and feces by reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynaphthol blue dye. Molecular and Cellular Probes, 24, 415–417.

    Article  CAS  Google Scholar 

  30. Goto, M., Honda, E., Ogura, A., Nomoto, A., & Hanaki, K. (2009). Colorimetric detection of loopmediated isothermal amplification reaction by using hydroxyl naphthol blue. Biotechniques, 46, 167–172.

    Article  CAS  Google Scholar 

  31. Fu, S., Qu, G., Guo, S., Ma, L., Zhang, N., Zhang, S., Gao, S., & Shen, Z. (2011). Applications of loop mediated isothermal DNA amplification. Applied Biochemistry and Biotechnology, 163, 845–850.

    Article  CAS  Google Scholar 

  32. Almasi, M. A., Jafary, H., Moradi, A., Zand, N., Ojaghkandi, M. A., & Aghaei, S. (2013). Detection of coat protein gene of the potato leafroll virus by reverse transcription loop-mediated isothermal amplification. Journal of Plant Pathology and Microbiology, 4, 156.

    Article  Google Scholar 

  33. Moradi, A., Nasiri, J., Abdollahi, H., & Almasi, M. (2012). Development and evaluation of a loop-mediated isothermal amplification assay for detection of Erwinia amylovora based on chromosomal DNA. European Journal of Plant Pathology, 133, 609–620.

    Article  CAS  Google Scholar 

  34. Parida, M., Shukla, J., Sharma, S., Ranghia-Santhosh, S., Ravi, V., Mani, R., Thomas, M., Khare, S., Rai, A., Kant Ratho, R., Pujari, S., Mishra, B., Lakshmana Rao, P. V., & Vijayaraghavan, R. (2011). Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza A H1N1 virus. Journal of Molecular Diagnostics, 13, 100–107.

    Article  CAS  Google Scholar 

  35. Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3, 877–882.

    Article  CAS  Google Scholar 

  36. Tsai, S. M., Chan, K. W., Hsu, W. L., Chang, T. J., Wong, M. L., & Wang, C. Y. (2009). Development of a loop-mediated isothermal amplification for rapid detection of orf virus. Journal of Virological Methods, 157, 200–204.

    Article  CAS  Google Scholar 

  37. Ahmadi, S., Almasi, M. A., Fatehi, F., Struik, P. C., & Moradi, A. (2012). Visual detection of potato leafroll virus by one-step reverse transcription loop-mediated isothermal amplification of DNA with hydroxynaphthol blue dye. Journal of Phytopathology, 161, 120–124.

    Article  Google Scholar 

  38. Dukes, J. P., King, D. P., & Alexandersen, S. (2006). Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Archives of Virology, 151, 1093–1106.

    Article  CAS  Google Scholar 

  39. Hill, J., Beriwal, S., Chandra, I., Paul, V. K., Kapil, A., Singh, T., Wadowsky, R. M., Singh, V., Goyal, A., Jahnukainen, T., Johnson, J. R., Tarr, P. I., & Vats, A. (2008). Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. Journal of Clinical Microbiology, 46, 2800–2804.

    Article  CAS  Google Scholar 

  40. Ren, W. C., Wang, C. M., & Cai, Y. Y. (2009). Loop-mediated isothermal amplification for rapid detection of acute viral necrobiotic virus in scallop Chlamys farreri. Acta Virologica, 53, 161–167.

    Article  CAS  Google Scholar 

  41. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  42. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA mini-preparation: version II. Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  43. Almasi, M. A., Hosseyni-Dehabadi, S. M., & Aghapour-Ojaghkandi, M. (2014). Comparison and evaluation of three diagnostic methods for detection of beet curly top virus in sugar beet using different visualizing systems. Applied Biochemistry and Biotechnology, 173, 1836–1848.

    Article  CAS  Google Scholar 

  44. Almasi, M. A., Moradi, A., Nasiri, J., Karami, S., & Nasiri, M. (2012). Assessment of performance ability of three diagnostic methods for detection of potato leafroll virus (PLRV) using different visualizing systems. Applied Biochemistry and Biotechnology, 168, 770–784.

    Article  CAS  Google Scholar 

  45. Blackburn, P., Wilson, G., & Moore, S. (1977). Ribonuclease inhibitor from human placenta. Purification and properties. Journal of Biological Chemistry, 252, 5904–5910.

    CAS  Google Scholar 

  46. Berger, S. L., & Birkenmeier, C. S. (1979). Inhibition of intractable nucleases with ribonucleoside–vanadyl complexes: isolation of messenger ribonucleic acid from resting lymphocytes. Biochemistry, 18, 5143–5149.

    Article  CAS  Google Scholar 

  47. Braid, M. D., Daniels, L. M., & Kitts, C. L. (2003). Removal of PCR inhibitors from soil DNA by chemical flocculation. Journal of Microbiology Methods, 52, 389–393.

    Article  CAS  Google Scholar 

  48. Almasi, M. A., Dehabadi, S. H., & Eftekhari, Z. (2013). Immunocapture loop mediated isothermal amplification for rapid detection of tomato yellow leaf curl virus (TYLCV) without DNA extraction. Journal of Plant Pathology and Microbiology, 4, 185.

    Article  Google Scholar 

  49. Almasi, M. A., Hosseini, S. M. D., Moradi, A., Eftekhari, Z., Ojaghkandi, M. A., & Aghaei, S. (2013). Development and application of loop-mediated isothermal amplification assay for rapid detection of Fusarium oxysporum f. sp. Lycopersici. Journal of Plant Pathology and Microbiology, 4, 177.

    Article  Google Scholar 

  50. Moradi, A., Almasi, M. A., Jafary, H., & Mercado-Blanco, J. (2014). A novel and rapid loop-mediated isothermal amplification assay for the specific detection of Verticillium dahlia. Journal of Applied Microbiology, 116, 942–954.

    Article  CAS  Google Scholar 

  51. Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26, 259–264.

    Google Scholar 

  52. Fukuta, S., Iida, T., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M., & Ishimoto, Y. (2003). Detection of Japanese yam mosaic virus by RT-LAMP. Archives of Virology, 148, 1713–1720.

    Article  CAS  Google Scholar 

  53. Ma, X. J., Shu, Y. L., Nie, K., Qin, M., Wang, D. Y., Gao, R. B., Wang, M., Wen, L. Y., Han, F., Zhou, S. M., Zhao, X., Cheng, Y. H., Li, D. X., & Dong, X. P. (2010). Visual detection of pandemic influenza A H1N1 virus 2009 by reverse-transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. Journal of Virological Methods, 167, 214–217.

    Article  CAS  Google Scholar 

  54. Soliman, H., & El-Matbouli, M. (2009). Immunocapture and direct binding loop mediated isothermal amplification simplify molecular diagnosis of Cyprinid herpesvirus-3. Journal of Virological Methods, 162, 91–95.

    Article  CAS  Google Scholar 

  55. Almasi, M. A., Erfanmanesh, M., Jafary, H., & Hosseinidehabadi, S. M. (2013). Visual detection of potato leafroll virus by one-step reverse transcription loop-mediated isothermal amplification of DNA with the genefinderTM dye. Journal of Virological Methods, 192, 51–54.

    Article  CAS  Google Scholar 

  56. Almasi, M. A., Ojaghkandi, M. A., Hemmatabadi, A., Hamidi, F., & Aghaei, S. (2013). Development of colorimetric loop-mediated isothermal amplification assay for rapid detection of the tomato yellow leaf curl virus. Journal of Plant Pathology and Microbiology, 4, 153.

    Article  Google Scholar 

  57. Cheng, S. J., Chen, Z. Y., Chu, Y. N., Cui, L. B., Shi, Z. Y., Ma, Y. J., & Zhou, G. H. (2011). Sensitive detection of influenza A (H1N1) virus by isothermal amplification in a single tube. Chinese Journal of Analytical Chemistry, 39, 335–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amin Almasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, M.A., Aghapour-ojaghkandi, M., Bagheri, K. et al. Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum . Appl Biochem Biotechnol 175, 3599–3616 (2015). https://doi.org/10.1007/s12010-015-1529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1529-y

Keywords

Navigation