Skip to main content

Advertisement

Log in

In Vitro Antifungal Activity and Probable Fungicidal Mechanism of Aqueous Extract of Barleria Grandiflora

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Barleria grandiflora Dalz. (Acanthaceae) is being used in India to treat different types of disorders including skin infections. Therefore, there are good possibilities to find antifungal compounds in its extracts with novel mechanism of action. The main objectives of the present study were to evaluate the antifungal activity of plant extracts and to study its effects on metabolic pathways of A. fumigatus. The microbroth dilution assay was used to explore antifungal activity and MIC of various extracts. Metabolic profiles of control and treated cultures were collected from Q-TOF-MS interfaced with HPLC. Affected metabolic pathways of A. fumigatus after the treatment were analyzed by discrimination analysis of mass data. Antifungal activities were observed in hot and cold water extracts of the plant. Hot water extract of B. grandiflora showed significant activity against tested fungi in the range 0.625–1.25 mg/mL. Partial least discrimination analysis revealed that the hot water plant extract downregulated amino acid, glyoxylate pathway, and methylcitrate pathways at the same time due to the synergistic effects of secondary metabolites. Hot water extract also downregulated several other metabolic pathways unique to fungi indicating its specific activity toward fungi. B. grandiflora showed promising antifungal activity which can further be exploited by identification of active compounds, to inhibit the specific fungal pathways and development of novel therapeutic antifungal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dagenais, T. R., & Keller, N. P. (2009). Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clinical Microbiology Reviews, 22(3), 447–465.

    Article  CAS  Google Scholar 

  2. Denning, D. W. (1998). Invasive aspergillosis. Clinical infectious diseases, 781–803.

  3. Ringden, O., Soderdahl, G., Mattsson, J., Uzunel, M., Remberger, M., Hentschke, P., & Ericzon, B. G. (2000). Transplantation of autologous and allogeneic bone marrow with liver from a cadaveric donor for primary liver cancer 1. Transplantation, 69, 2043–2048.

    Article  CAS  Google Scholar 

  4. Brock, M., Jouvion, G., Droin-Bergere, S., Dussurget, O., Nicola, M. A., & Ibrahim-Granet, O. (2008). Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis. Applied and Environmental Microbiology, 74(22), 7023–7035.

    Article  CAS  Google Scholar 

  5. Groll, A. H., Piscitelli, S. C., & Walsh, T. J. (1998). Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Advances in Pharmacology, 44, 343–500.

    Article  CAS  Google Scholar 

  6. Kontoyiannis, D. P., & Lewis, R. E. (2002). Antifungal drug resistance of pathogenic fungi. The Lancet, 359, 1135–1144.

    Article  CAS  Google Scholar 

  7. Chandrasekar, P. H., & Manavathu, E. (2001). Voriconazole: a second-generation triazole. Drugs Today, 37, 135–148.

    Article  CAS  Google Scholar 

  8. Prentice, H. G., Hann, I. M., Herbrecht, R., Aoun, M., Kvaloy, S., Catovsky, D., & Gibson, B. E. S. (1997). A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. British Journal of Haematology, 98(3), 711–718.

    Article  CAS  Google Scholar 

  9. Hiemenz, J. W., & Walsh, T. J. (1996). Lipid formulations of amphotericin B: recent progress and future directions. Clinical Infectious Diseases, 22(Supplement 2), S133–S144.

    Article  CAS  Google Scholar 

  10. Santos, A. (2011). Aspartic proteases of human pathogenic fungi are prospective targets for the generation of novel and effective antifungal inhibitors. Current Enzyme Inhibition, 7(2), 96–118.

    Article  Google Scholar 

  11. Guo, T., & Hobbs, D. W. (2003). Privileged structure-based combinatorial libraries targeting G protein-coupled receptors. Assay and Drug Development Technologies, 1(4), 579–592.

    Article  CAS  Google Scholar 

  12. Ye, Z. H., Garrad, R. C., Winston, M. K., & Bhattacharjee, J. K. (1991). Use of α‐aminoadipate and lysine as sole nitrogen source by Schizosacharomyces pombe and selected pathogenic fungi. Journal of Basic Microbiology, 31(2), 149–156.

    Article  CAS  Google Scholar 

  13. Aneja, K. R., Joshi, R., & Sharma, C. (2010). Potency of Barleria prionitis L. bark extracts against oral diseases causing strains of bacteria and fungi of clinical origin. New York Science Journal, 3, 5–12.

    Google Scholar 

  14. Sawarkar, H. A., Khadabadi, S. S., Wandhare, M. D., Farooqui, I. A., & Deokate, U. A. (2009). The antioxidant activity of the leaves of Barleria grandiflora dalz.(acanthaceae). Ethnobotanical Leaflets, 4, 3.

    Google Scholar 

  15. Dabur, R., Chhillar, A. K., Yadav, V., Kamal, P. K., Gupta, J., & Sharma, G. L. (2005). In vitro antifungal activity of 2-(3, 4-dimethyl-2, 5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. Journal of Medical Microbiology, 54(6), 549–552.

    Article  CAS  Google Scholar 

  16. Vitale, R. G., Mouton, J. W., Afeltra, J., Meis, J. F., & Verweij, P. E. (2002). Method for measuring post-antifungal effect in Aspergillus species. Antimicrobial Agents and Chemotherapy, 46(6), 1960–1965.

    Article  CAS  Google Scholar 

  17. Ibrahim‐Granet, O., Dubourdeau, M., Latge, J. P., Ave, P., Huerre, M., Brakhage, A. A., & Brock, M. (2008). Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cellular Microbiology, 10(1), 134–148.

    Google Scholar 

  18. d'Enfert, C. (1996). Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Current Genetics, 30(1), 76–82.

    Article  Google Scholar 

  19. Vodisch, M., Scherlach, K., Winkler, R., Hertweck, C., Braun, H. P., Roth, M., & Kniemeyer, O. (2011). Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. Journal of Proteome Research, 10(5), 2508–2524.

    Article  CAS  Google Scholar 

  20. Panaccione, D. G. (2005). Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters, 251(1), 9–17.

    Article  CAS  Google Scholar 

  21. Magasanik, B. (1992). in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (eds. Jones, E.W., Pringle, J.R. & Broach, J.R.) 283–318 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor).

  22. Chen, E. J., & Kaiser, C. A. (2003). LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. The Journal of Cell Biology, 161(2), 333–347.

    Article  CAS  Google Scholar 

  23. Mark Zabriskie, T., & Jackson, M. (2000). Lysine biosynthesis and metabolism in fungi. Natural Product Reports, 17(1), 85–97.

    Article  Google Scholar 

  24. Odds, F. C. (2005). Genomics, molecular targets and the discovery of antifungal drugs. Revista Iberoamericana de Micologia, 22(4), 229–237.

    Article  Google Scholar 

  25. Schobel, F., Jacobsen, I. D., & Brock, M. (2010). Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryotic Cell, 9(6), 878–893.

    Article  Google Scholar 

  26. Kubicek, C. P., Punt, P. E., & Visser, J. (2010). Production of organic acids by filamentous fungi. Industrial Applications, 10, 215.

    Google Scholar 

  27. Ruijter, G. J. G., Kubicek, C. P., Visser, J. (2002). in Osiewacz HD (ed), vol 10: Industrial applications (The Mycota,) Springer, Berlin Heidelberg New York, pp. 213–230.

  28. Reeves, E. P., Nagl, M., O'Keeffe, J., Kelly, J., & Kavanagh, K. (2006). Effect of N-chlorotaurine on Aspergillus, with particular reference to destruction of secreted gliotoxin. Journal of Medical Microbiology, 55(7), 913–918.

    Article  CAS  Google Scholar 

  29. Stapleton, P. P., Redmond, H. P., & Bouchier-Hayes, D. J. (1998). Myeloperoxidase (MPO) may mediate neutrophil adherence to the endothelium through upregulation of CD11B expression—an effect downregulated by taurine. Advances in Experimental Medicine and Biology, 442, 183–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Dabur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Jain, P., Sharma, B. et al. In Vitro Antifungal Activity and Probable Fungicidal Mechanism of Aqueous Extract of Barleria Grandiflora . Appl Biochem Biotechnol 175, 3571–3584 (2015). https://doi.org/10.1007/s12010-015-1527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1527-0

Keywords

Navigation