Skip to main content
Log in

Profiling of Phosphatidylinositol 3-Kinase (PI3K) Proteins in Insulin Signaling Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phosphoinositide 3-kinase (PI3K) enzyme plays a vital role in the insulin signaling pathway as well as in other pathways that are involved in the growth, migration, and survival of cells. In the insulin signaling pathway, PI3K proteins that include p50α, p85α, p85β, p55γ, p110α, p110β, and p110γ are associated with the critical node-2. This study has used bioinformatic tools to understand phylogenetics, conservation patterns, conserved domains, orientation of residues, and interactions among PI3K proteins. The phylogenetic analysis showed p110α and p110γ with a common origin while p50α and p85α sharing an evolutionary history. The sequence alignment showed the highest score (97) between p85α and p50α. Several highly conserved amino acid residues were found high in p110 beta (n = 102). Subsequently, the number of highly conserved amino acid restudies was low in p50alpha and p55γ (n = 15). The PI3K proteins are evidentially linked to other proteins and pathways as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296, 1655–1657.

    Article  CAS  Google Scholar 

  2. Rameh, L. E., & Cantley, L. C. (1999). The role of phosphoinositide 3-kinase lipid products in cell function. Journal of Biological Chemistry, 274, 8347–8350.

    Article  CAS  Google Scholar 

  3. Leevers, S. J., Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Current Opinion in Cell Biology, 11, 219–225.

    Article  CAS  Google Scholar 

  4. Carpenter, C. L., Duckworth, B. C., Auger, K. R., Cohen, B., Schaffhausen, B. S., & Cantley, L. C. (1990). Purification and characterization of phosphoinositide 3-kinase from rat liver. Journal of Biological Chemistry, 265, 19704–19711.

    CAS  Google Scholar 

  5. Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Experimental Cell Research, 253, 239–254.

    Article  CAS  Google Scholar 

  6. Hawkins, P. T., Anderson, K. E., Davidson, K., & Stephens, L. R. (2006). Signalling through Class I PI3Ks in mammalian cells. Biochemical Society Transactions, 34, 647–662.

    Article  CAS  Google Scholar 

  7. Chaussade, C., Rewcastle, G. W., Kendall, J. D., Denny, W. A., Cho, K., et al. (2007). Evidence for functional redundancy of class IA PI3K isoforms in insulin signaling. Biochemical Journal, 404, 449–458.

    Article  CAS  Google Scholar 

  8. Wymann, M. P., Bjorklof, K., Calvez, R., Finan, P., Thomast, M., et al. (2003). Phosphoinositide 3-kinase gamma: a key modulator in inflammation and allergy. Biochemical Society Transactions, 31, 275–280.

    Article  CAS  Google Scholar 

  9. Crackower, M. A., Oudit, G. Y., Kozieradzki, I., Sarao, R., Sun, H., et al. (2002). Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell, 110, 737–749.

    Article  CAS  Google Scholar 

  10. Stephens, L. R., Eguinoa, A., Erdjument-Bromage, H., Lui, M., Cooke, F., et al. (1997). The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell, 89, 105–114.

    Article  CAS  Google Scholar 

  11. Elis, W., Triantafellow, E., Wolters, N. M., Sian, K. R., Caponigro, G., et al. (2008). Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Molecular Cancer Research, 6, 614–623.

    Article  CAS  Google Scholar 

  12. Fry, M. J. (2001). Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Research, 3, 304–312.

    Article  CAS  Google Scholar 

  13. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews Cancer, 2, 489–501.

    Article  CAS  Google Scholar 

  14. Wickenden, J. A., & Watson, C. J. (2010). Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Research, 12, 202.

    Article  Google Scholar 

  15. Koyasu, S. (2003). The role of PI3K in immune cells. Nature Immunology, 4, 313–319.

    Article  CAS  Google Scholar 

  16. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., et al. (2007). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35, D5–D12.

    Article  CAS  Google Scholar 

  17. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., et al. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31, 3497–3500.

    Article  CAS  Google Scholar 

  18. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.

    Article  CAS  Google Scholar 

  19. Aldous, D. (1996). (Minneapolis, MN, 1993). IMA Vol. Math. Appl. 76 1–18. New York: Springer.

  20. Bereg, S., & Wang, H. (2007). Discrete Applied Mathematics, 155, 457–467.

    Article  Google Scholar 

  21. Tomii, K., & Kanehisa, M. (1996). Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Engineering, 9, 27–36.

    Article  CAS  Google Scholar 

  22. Vingron, M., & Argos, P. (1989). A fast and sensitive multiple sequence alignment algorithm. Computer Applications in the Biosciences, 5, 115–121.

    CAS  Google Scholar 

  23. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533.

    Article  CAS  Google Scholar 

  24. Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., et al. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164.

    Article  CAS  Google Scholar 

  25. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., et al. (2003). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research, 31, 383–387.

    Article  CAS  Google Scholar 

  26. Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends in Genetics, 16, 276–277.

    Article  CAS  Google Scholar 

  27. DeLano, W. L. (2002). The PyMOL Molecular Graphics System http://www.pymol.org 2002.

  28. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al. (2009). STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, D412–D416.

    Article  CAS  Google Scholar 

  29. Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J., & Kahn, C. R. (1994). Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp 70 S6 kinase, DNA synthesis, and glucose transporter translocation. Molecular Cell Biology, 14, 4902–4911.

    CAS  Google Scholar 

  30. Shepherd, P. R., Withers, D. J., & Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochemical Journal, 333, 471–490.

    CAS  Google Scholar 

  31. Backer, J. M., Myers, M. G., Shoelson, S. E., Jr., Chin, D. J., Sun, X. J., et al. (1992). Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation. EMBO Journal, 11, 3469–3479.

    CAS  Google Scholar 

  32. Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y., & Lucas, D. M. (2000). Structure, function, and biology of SHIP proteins. Genes & Development, 14, 505–520.

    CAS  Google Scholar 

  33. Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology, 7, 85–96.

    Article  CAS  Google Scholar 

  34. Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., et al. (2003). Protein disorder prediction: implications for structural proteomics. Structure, 11, 1453–1459.

    Article  CAS  Google Scholar 

  35. Tan, C. S. H., Bodenmiller, B., Pasculescu, A., Jovanovic, M., Hengartner, M. O., et al. (2009). Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Science Signaling, 2, 39.

    Article  Google Scholar 

  36. Miller, M. L., Jensen, L. J., Diella, F., Jørgensen, C., Tinti, M., et al. (2008). Linear motif atlas for phosphorylation-dependent signaling. Science Signaling, 1, 2.

    Article  Google Scholar 

  37. Beltrao, P., Trinidad, J. C., Fiedler, D., Roguev, A., Lim, W. A., et al. (2009). Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biology, 7, e1000134.

    Article  Google Scholar 

  38. Landry, C. R., Levy, E. D., & Michnick, S. W. (2009). Weak functional constraints on phosphoproteomes. Trends in Genetics, 25, 193–197.

    Article  CAS  Google Scholar 

  39. Holt, L. J., Tuch, B. B., Villn, J., Johnson, A. D., Gygi, S. P., & Morgan, D. O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science, 325, 1682–1686.

    Article  CAS  Google Scholar 

  40. Tan, C. S. H., Pasculescu, A., Lim, W. A., Pawson, T., Bader, G. D., et al. (2009). Positive selection of tyrosine loss in metazoan evolution. Science, 325, 1686–1688.

    Article  CAS  Google Scholar 

  41. Brown, J. R., & Auger, K. R. (2011). Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evolutionary Biology, 11, 4.

    Article  CAS  Google Scholar 

  42. Mellor, P., Furber, L. A., Nyarko, J. N., & Anderson, D. H. (2012). Multiple roles for the p85alpha isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochemical Journal, 441, 23–37.

    Article  CAS  Google Scholar 

  43. Backer, J. M. (2010). The regulation of class IA PI 3-kinases by inter-subunit interactions. Current Topics in Microbiology and Immunology, 346, 87–114.

    CAS  Google Scholar 

  44. Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2012). Can computational biology improve the phylogenetic analysis of insulin? Computer Methods and Programs in Biomedicine, 108, 860–872.

    Article  Google Scholar 

  45. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  46. Saitou, N. (1991). Methods for Phylogenetic Tree Reconstruction, Handbook of Statistics (Vol. 8, pp. 317–346). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  47. Deo, N. (1974). Graph theory with applications to engineering and computer science. Prentice. Hall of India.

  48. Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2011). Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: A network based protein-protein interaction analysis. Plos One, 6, e16388.

    Article  CAS  Google Scholar 

  49. Chakraborty, C., Agoramoorthy, G., & Hsu, M. J. (2011). Exploring the evolutionary relationship of insulin receptor substrate family using computational biology. Plos One, 6, e16580.

    Article  CAS  Google Scholar 

  50. Mbah, A. N., Kamga, H. L., Awofolu, O. R., & Isokpehi, R. D. (2012). Drug Target Exploitable Structural Features of Adenylyl Cyclase Activity in Schistosoma mansoni. Drug Target Insights, 6, 41–58.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors take this opportunity to thank the management of Galgotias University and VIT University for providing facilities and support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiranjib Chakraborty or Govindasamy Agoramoorthy.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 99 kb)

Supplementary Figure 2

(DOC 64 kb)

Supplementary Figure 3

(DOC 232 kb)

Supplementary Figure 4

(DOC 665 kb)

Supplementary Figure 5

(DOC 135 kb)

Supplementary Table 1

(DOC 1093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, C., Doss, C.G.P., Bhatia, R. et al. Profiling of Phosphatidylinositol 3-Kinase (PI3K) Proteins in Insulin Signaling Pathway. Appl Biochem Biotechnol 175, 3431–3446 (2015). https://doi.org/10.1007/s12010-015-1515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1515-4

Keywords

Navigation