Skip to main content

Advertisement

Log in

Enzymatic Hydrolyzed Feather Peptide, a Welcoming Drug for Multiple-Antibiotic-Resistant Staphylococcus aureus: Structural Analysis and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to explore the bactericidal activity of a feather-degraded active peptide against multiple-antibiotic-resistant (MAR) Staphylococcus aureus. An antibacterial peptide (ABP) was isolated from the chicken feathers containing fermented media of Paenibacillus woosongensis TKB2, a keratinolytic soil isolate. It was purified by HPLC, and its mass was found to be 4666.87 Da using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) spectroscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of this peptide were 22.5 and 90 μg/ml, respectively. SEM study revealed the distorted cell wall of the test strain along with pore formation. The possible reason for bactericidal activity of the peptide is due to generation of reactive oxygen species (ROS), resulting in membrane damage and leakage of intracellular protein. Complete sequence of the peptide was predicted and retrieved from the sequence database of chicken feather keratin after in silico trypsin digestion using ExPASy tools. Further, net charge, hydrophobicity (77.7 %) and molecular modelling of the peptide were evaluated for better understanding of its mode of action. The hydrophobic region (17 to 27) of the peptide may facilitate for initial attachment on the bacterial membrane. The ABP exhibited no adverse effects on RBC membrane and HT-29 human cell line. This cytosafe peptide can be exploited as an effective therapeutic agent to combat Staphylococcal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mukherjee, S., & Chakraborty, R. (2007). Acta Microbiologica et Immunologica Hungarica, 54, 379–397.

    Article  CAS  Google Scholar 

  2. Cudic, M., Condie, B. A., Weiner, D. J., Lysenko, E. S., Xiang, Z. Q., & Insug, O. (2002). Peptides, 23, 271–273.

    Article  Google Scholar 

  3. Hancock, R. E., & Lehrer, R. (1998). Trends in Biotechnology, 16, 82–88.

    Article  CAS  Google Scholar 

  4. Larrick, J. W., & Wright, S. C. (1996). Drugs of the Future, 21, 41–48.

    CAS  Google Scholar 

  5. Reddy, K. V., Yedery, R. D., & Aranha, C. (2004). International Journal of Antimicrobial Agents, 24(6), 536–547.

    Article  CAS  Google Scholar 

  6. Katsumi, M. (2008). Biochimica et Biophysica Acta-Biomembranes, 1788(8), 1687–1692.

    Google Scholar 

  7. Zasloff, M. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 5449–5453.

    Article  CAS  Google Scholar 

  8. Cole, A. M., Weis, P., & Diamond, G. (1997). Journal of Biological Chemistry, 272, 12008–12013.

    Article  CAS  Google Scholar 

  9. Gauria, S. S., Mandal, S. M., Pati, B. R., & Dey, S. (2011). Peptides, 32, 691–696.

    Article  Google Scholar 

  10. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., & Boman, H. G. (1981). Nature, 292, 246–248.

    Article  CAS  Google Scholar 

  11. Lehrer, R. I., Lichtenstein, A. K., & Ganz, T. (1993). Annual Review in Immunology, 1, 105–128.

    Article  Google Scholar 

  12. Cammue, B. P., De-Bolle, M. F., Terras, F. R., Proost, P., Van Damme, J., & Rees, S. B. (1992). Journal of Biological Chemistry, 267, 2228–2233.

    CAS  Google Scholar 

  13. Palacios, J., Vignolo, G., Farías, M., de Ruiz Holgado, A., Oliver, G., & Sesma, F. (1999). Microbiological Research, 154, 199–204.

    Article  CAS  Google Scholar 

  14. Schmidt, W.F. (1998). In: Proceeding, Poultry Waste Management Conference, 19-22 Oct. 1998, Springdale, Arkansas, pp 276-282.

  15. Paul, T., Halder, S. K., Das, A., Bera, S., Maity, C., Mandal, A., Das, P. S., Mohapatra, P. K. D., Pati, B. R., & Mondal, K. C. (2013). Biocatalysis and Agricultural Biotechnology, 2, 50–57.

    Article  Google Scholar 

  16. Gurav, R. G., & Jadhav, J. P. (2013). Environmental Science and Pollution Research, 20, 4532–4539.

    Article  CAS  Google Scholar 

  17. Bose, A., Pathan, S., Pathak, K., & Keharia, H. (2013). Waste and Biomass Valorization. doi:10.1007/s12649-013-9272-5.

    Google Scholar 

  18. Williams, C. M., Lee, C. G., Garlich, J. D., & Shih, J. C. H. (1991). Poultry Science, 70, 85–94.

    Article  CAS  Google Scholar 

  19. Grazziotin, A., Pimentel, F. A., de Jong, E. V., & Brandelli, A. (2006). Animal Feed Science and Technology, 126, 135–144.

    Article  CAS  Google Scholar 

  20. Bearman, G. M., & Wenzel, R. P. (2005). Archives of Medical Research, 36, 646–659.

    Article  Google Scholar 

  21. Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Clinical Microbiology Reviews, 10(3), 505–520.

    CAS  Google Scholar 

  22. Curran, J. P., & Al-Salihi, F. L. (1980). Pediatrics, 66(2), 285–290.

    CAS  Google Scholar 

  23. Lin, M. C., Hui, C. F., Chen, J. Y., & Wu, J. L. (2013). Peptides, 44C, 139–148.

    Article  Google Scholar 

  24. Paul, T., Das, A., Mandal, A., Jana, A., Maity, C., Adak, A., Halder, S. K., Mohapatra, P. K. D., Pati, B. R., & Mondal, K. C. (2014). Waste and Biomass Valorization, 5, 97–107.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Mandal, S. M., Dey, S., Mandal, M., Sarkar, S., Maria-Neto, S., & Franco, O. L. (2009). Peptides, 30, 633–637.

    Article  CAS  Google Scholar 

  27. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). American Journal of Clinical Pathology, 45, 493–496.

    CAS  Google Scholar 

  28. Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement. Document M100-S17. Wayne, PA CLSI; 2007.

  29. Wang, A. P., Su, Y. P., Wang, S., Shen, M. Q., Chen, F., & Chen, M. (2004). African Journal of Microbiological Research, 4, 626–633.

    Google Scholar 

  30. Giacometti, A., Cirioni, O., Ghiselli, R., Goffi, L., Mocchegiani, F., & Riva, A. (2000). Antimicrobial Agents and Chemotherapy, 44, 3306–3309.

    Article  CAS  Google Scholar 

  31. Soo-Hwan, K., Lee, H., Ryu, D., Choi, S., & Lee, D. (2011). Korean Journal of Microbiology and Biotechnology, 39(1), 77–85.

    Google Scholar 

  32. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–294.

    Article  CAS  Google Scholar 

  33. Mandal, S. M., Migliolo, L., Franco, O. L., & Ghosh, A. K. (2011). Peptides, 32, 1741–1747.

    Article  CAS  Google Scholar 

  34. Chauviere, G., Cocoinnier, M. H., Kerneis, S., Fourniat, J., & Servin, A. L. (1992). Journal of Genome Microbiology, 138, 1689–1696.

    Article  CAS  Google Scholar 

  35. Bennett-Lovsey, R. M., Herbert, A. D., Sternberg, M. J. E., & Kelley, L. A. (2008). Proteins, 70, 611–625.

    Article  CAS  Google Scholar 

  36. Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). Journal of Molecular Biology, 247, 536–540.

    CAS  Google Scholar 

  37. Berman, H. M., et al. (2000). Nucleic Acids Research, 28, 235–242.

    Article  CAS  Google Scholar 

  38. Tress, M. L., Jones, D. T., & Valenica, A. (2003). Journal of Molecular Biology, 330, 705–718.

    Article  CAS  Google Scholar 

  39. Shaw, W. V., Bentley, D. W., & Sands, L. (1970). Journal of Bacteriology, 104, 1095–1105.

    CAS  Google Scholar 

  40. Howden, B. P., McEvoy, C. R. E., Allen, D. L., Chua, K., Gao, W., Harrison, P. F., Bell, J., Coombs, G., Bennett-Wood, V., Porter, J. L., Robins-Browne, R., Davies, J. K., Seemann, T., & Stinear, T. P. (2011). PLoS Pathogens, 7(11), e1002359. doi:10.1371/journal.ppat.1002359.

    Article  CAS  Google Scholar 

  41. Friedrich, C. L., Scott, M. G., Karunaratne, N., Yan, H., & Hancock, R. E. (1999). Antimicrobial Agents and Chemotherapy, 43, 1542–1548.

    CAS  Google Scholar 

  42. Otto, M. (2009). Nature Reviews Microbiology, 7, 555–557.

    Article  CAS  Google Scholar 

  43. Bechinger, B. (1999). Biochimica et Biophysica Acta, 1462, 157–183.

    Article  CAS  Google Scholar 

  44. Shai, Y. (1999). Biochimica et Biophysica Acta, 1462, 55–70.

    Article  CAS  Google Scholar 

  45. Hugosson, M., Andreu, D., Boman, H. G., & Glaser, E. (1994). European Journal of Biochemistry, 223, 1027–1033.

    Article  CAS  Google Scholar 

  46. Westerhoff, H. V., Juretić, D., Hendler, R. W., & Zasloff, M. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 6597–6601.

    Article  CAS  Google Scholar 

  47. Silvestro, L., Gupta, K., Weiser, J. N., & Axelsen, P. H. (1997). Biochemistry, 36, 11452–11460.

    Article  CAS  Google Scholar 

  48. Tosteson, M. T., Holmes, S. J., Razin, M., & Tosteson, D. C. (1985). Journal of Membrane Biology, 87, 35–44.

    Article  CAS  Google Scholar 

  49. DeGrado, W. F., Musso, G. F., Lieber, M., Kaiser, E. T., & Kézdy, F. J. (1982). Biophysical Journal, 37, 329–338.

    Article  CAS  Google Scholar 

  50. Friedrich, C. L., Moyles, D., Beveridge, T. J., & Hancock, R. E. (2000). Antimicrobial Agents and Chemotherapy, 44, 2086–2092.

    Article  CAS  Google Scholar 

  51. Eliassen, L. T., Berge, G., Leknessund, A., Wikman, M., Lindin, I., Lokke, C., Ponthan, F., Johnsen, J. I., Sveinbjørnsson, B., Kogner, P., Flægstad, T., & Rekda, O. (2006). International Journal of Cancer, 119, 493–500.

    Article  CAS  Google Scholar 

  52. Starley, I. F., Mohammed, P., Schneider, G., & Bickler, S. W. (1999). Burns, 25, 636–639.

    Article  CAS  Google Scholar 

  53. Prytz, B., Connell, J. J. F., & Rousselot, L. M. (1999). Clinical Pharmacology and Therapy, 7, 347–351.

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grant Commission [Sanction No: F.11-114/2008 (BSR)], Govt. of India, India, for the financial contribution in this study. We are also thankful to Mrs. Pratishruti Mandal, Assistant Teacher, Gokulpur Bidhan Chandra Vidyabhaban (H.S.), Gokulpur, Midnapore, West Bengal, India, for grammatical revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab C. Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 397 kb)

ESM 2

(DOC 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, T., Mandal, A., Mandal, S.M. et al. Enzymatic Hydrolyzed Feather Peptide, a Welcoming Drug for Multiple-Antibiotic-Resistant Staphylococcus aureus: Structural Analysis and Characterization. Appl Biochem Biotechnol 175, 3371–3386 (2015). https://doi.org/10.1007/s12010-015-1509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1509-2

Keywords

Navigation