Skip to main content
Log in

Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase in Rhamnolipid Reversed Micellar System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rhamnolipid was applied to degrade anthracene and pyrene in reversed micelles. The parameters in degradation were optimized for the purpose of improving degradation rates. The proper amount of rhamnolipid (RL) used for degrading anthracene was 0.065 mM, while 0.075 mM for pyrene. However, reaction time for degrading both anthracene and pyrene was 48 h. The optimum water content, pH, laccase concentration, polycyclic aromatic hydrocarbon (PAH) initial concentration, and volume ratio of n-hexanol to isooctane for both were found out. The highest degradation rates of anthracene and pyrene were 37.52 and 25.58 %, respectively. Although the degradation rates were not higher than the results previous literatures reported, this method was of novelty and provided guidance in application in degrading PAHs by reversed micellar system, especially for biosurfactant-based reversed micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pozdnyakova, N. N., Nikiforova, S. V., Makarov, O. E., & Turkovskaya, O. V. (2011). Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1. Applied Biochemistry and Biotechnology, 47, 543–548.

    CAS  Google Scholar 

  2. Mahanty, B., Pakshirajan, K., & Dasu, V. V. (2006). Production and properties of a biosurfactant applied to polycyclic aromatic hydrocarbon solubilization. Applied Biochemistry and Biotechnology, 134, 129–141.

    Article  CAS  Google Scholar 

  3. Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Biochemistry and Biotechnology, 134, 233–248.

    Article  CAS  Google Scholar 

  4. Michizoe, J., Ichinose, H., Kamiya, N., Maruyama, T., & Goto, M. (2005). Biodegradation of phenolic environmental pollutants by a surfactant-Laccase complex in organic media. Journal of Bioscience and Bioengineering, 99, 642–647.

    Article  CAS  Google Scholar 

  5. Kudanga, T., Nyanhongo, G. S., Guebitz, G. M., & Burton, S. (2011). Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme and Microbial Technology, 48, 195–208.

    Article  CAS  Google Scholar 

  6. Cambria, M. T., Minniti, Z., Librando, V., & Cambria, A. (2008). Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Applied Biochemistry and Biotechnology, 149, 1–8.

    Article  CAS  Google Scholar 

  7. Talukder, M. M. R., Zaman, M. M., Hayashi, Y., Wu, J. C., & Kawanishi, T. (2007). Thermostability of Cromobacterium viscosum lipase in AOT/isooctane reverse micelle. Applied Biochemistry and Biotechnology, 141, 77–83.

    Article  CAS  Google Scholar 

  8. Talukder, M. M. R., Takeyama, T., Hayashi, Y., Wu, J. C., Kawanishi, T., Shimizu, N., & Ogino, C. (2003). Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system. Applied Biochemistry and Biotechnology, 110, 101–112.

    Article  CAS  Google Scholar 

  9. Hasmann, F. A., Pessoa, A., & Roberto, I. C. (2000). β-Xylosidase recovery by reversed micelles. Applied Biochemistry and Biotechnology, 84–86, 1101–1111.

    Article  Google Scholar 

  10. Yu, T., & Cao, X. (2014). Effect of chaotropes on lipase back extraction recovery in the process of reverse micellar extraction. Applied Biochemistry and Biotechnology, 172, 3287–3296.

    Article  CAS  Google Scholar 

  11. Zhao, X., Chen, J., Lu, Z., Ling, X., Deng, P., Zhu, Q., & Du, F. (2011). Analysis of the amino acids of soy globulins by AOT reverse micelles and aqueous buffer. Applied Biochemistry and Biotechnology, 165, 802–813.

    Article  CAS  Google Scholar 

  12. Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitsky, Y. L., & Levashov, A. V. (1989). Micellar enzymology: its relation to membranology. Biochimica et Biophysica Acta (BBA)-Biomembranes, 981(2), 161–172.

    Article  CAS  Google Scholar 

  13. Sun, Q., Yang, Y., Lu, Y., & Lu, W. (2011). Extraction of bovine serum albumin using reverse micelles formed by hexadecyl trimethyl ammonium chloride. Applied Biochemistry and Biotechnology, 163, 744–755.

    Article  CAS  Google Scholar 

  14. Carvalho, C. M. L., & Cabral, J. (2000). Reverse micelles as reaction media for lipases. Biochimie, 82(11), 1063–1085.

    Article  CAS  Google Scholar 

  15. Biasutti, M. A., Abuin, E. A., Silber, J. J. N., Correa, M., & Lissi, E. A. (2008). Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Advances in Colloid and Interface Science, 136, 1–24.

    Article  CAS  Google Scholar 

  16. Peng, X., Yuan, X. Z., Zeng, G. M., Huang, H. J., Wang, H., Liu, H., Bao, S., Ma, Y. J., Cui, K. L., Leng, L. J., & Xiao, Z. H. (2014). Synchronous extraction of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium fermentation broth. Separation and Purification Technology, 123, 164–170.

    Article  CAS  Google Scholar 

  17. Peng, X., Yuan, X. Z., Zeng, G. M., Huang, H. J., Zhong, H., & Liu, Z. F. (2012). Extraction and purification of laccase by employing a novel rhamnolipid reversed micellar system. Process Biochemistry, 47, 742–748.

    Article  CAS  Google Scholar 

  18. Pickard, M. A., Roman, R., Tinoco, R., & Vazquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environmental Microbiology, 65, 3805–3809.

    CAS  Google Scholar 

  19. Kimura, M., Michizoe, J., Oakazaki, S., Furusaki, S., Goto, M., Tanak, H., & Warishi, H. (2004). Activation of lignin peroxidase in organic media by reversed micelles. Biotechnology and Bioengineering, 88, 495–501.

    Article  CAS  Google Scholar 

  20. Liang, Y. S., Yuan, X. Z., Zeng, G. M., Zhong, H., Li, H., & Wang, W. W. (2011). Effects of surfactants on enzyme-containing reversed micellar system. Science in China, Series B Chemistry, 5, 715–723.

    Article  Google Scholar 

  21. Luisi, P. L., Magid, L. J., & Fendler, J. H. (1986). Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. Critical Reviews in Biochemistry and Molecular Biology, 20(4), 409–474.

    Article  CAS  Google Scholar 

  22. Gandin, E., Lion, Y., & Van, V. A. (1984). Diffusion-concentration product of oxygen within water pools of Aerosol OT-heptane reverse micelles. The Journal of Physical Chemistry, 88(2), 280–284.

    Article  CAS  Google Scholar 

  23. Fletcher, P. D. I., Howe, A. M., & Robinson, B. H. (1987). The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsions. Journal of the Chemical Society, 83, 985–1006.

    CAS  Google Scholar 

  24. Michizoe, J., Ichinose, H., Kamiya, N., Maruyama, T., & Goto, M. (2005). Functionalization of the cytochrome P450cam monooxygenase system in the cell-like aqueous compartments of water-in-oil emulsions. Journal of Bioscience and Bioengineering, 99, 12–17.

    Article  CAS  Google Scholar 

  25. Eibes, G., McCann, C., Pedezert, A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2010). Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a two-phase partitioning bioreactor. Biochemical Engineering Journal, 51, 79–85.

    Article  CAS  Google Scholar 

  26. Gitsov, I., Hamzik, J., Ryan, J., Simonyan, A., Nakas, J. P., Omori, S., Krastanov, A., Cohen, T., & Tanenbaum, S. W. (2008). Enzymatic nanoreactors for environmentally benign biotransformations. 1. Formation and catalytic activity of supramolecular complexes of laccase and linear-dendritic block copolymers. Biomacromolecules, 9, 804–811.

    Article  CAS  Google Scholar 

  27. Keum, Y. S., & Li, Q. X. (2004). Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere, 56, 23–30.

    Article  CAS  Google Scholar 

  28. Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., & Adams, C. D. (2007). Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Research, 41, 3281–3288.

    Article  CAS  Google Scholar 

  29. Fukuda, T., Uchida, H., Takashima, Y., Uwajima, T., Kawabata, T., & Suzuki, M. (2001). Degradation of bisphenol a by purified laccase from Trametes villosa. Biochemical and Biophysical Research Communications, 284, 704–706.

    Article  CAS  Google Scholar 

  30. Kim, Y. J., & Nicell, J. A. (2006). Laccase catalysed oxidation of aqueous triclosan. Journal of Chemical Technology and Biotechnology, 81, 1344–1352.

    Article  CAS  Google Scholar 

  31. Zhang, J., Liu, X., Xu, Z., Chen, H., & Yang, Y. (2008). Degradation of chlorophenols catalyzed by laccase. International Biodeterioration and Biodegradation, 61, 351–356.

    Article  CAS  Google Scholar 

  32. Mathew, D. S., & Juang, R. S. (2005). Improved back extraction of papain from AOT reverse micelles using alcohols and a counter-ionic surfactant. Biochemical Engineering Journal, 25, 219–225.

    Article  CAS  Google Scholar 

  33. Miichizoe, J., Goto, M., & Furusaki, S. (2005). Catalytic activity of lactase hosted in reversed micelles. Journal of Bioscience and Bioengineering, 92, 67–71.

    Article  Google Scholar 

  34. Mohidem, N. A., & Mat, H. B. (2012). The catalytic activity enhancement and biodegradation potential of free laccase and novel sol-gel laccase in non-conventional solvents. Bioresource Technology, 114, 472–477.

    Article  CAS  Google Scholar 

  35. Shuler, M. L., & Kargi, F. (2005). Bioprocess engineering. New Jersey: Upper Saddle River.

    Google Scholar 

  36. Liu, J. G., Xing, J. M., Chang, T. S., & Liu, H. Z. (2006). Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio. Bioprocess and Biosystems Engineering, 28, 267–273.

    Article  CAS  Google Scholar 

  37. Clark, D. S. (2004). Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Journal of Biological Chemistry, 359, 1299–1307.

    CAS  Google Scholar 

  38. Zhang, W., Huang, X., Li, Y., Qu, Y., & Gao, P. (2006). Catalytic activity of lignin peroxidase and partition of veratryl alcohol in AOT/isooctane/toluene/water reverse micelles. Applied Microbiology Biotechnology., 70, 315–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21276069 and 71431006). The authors appreciate contributions of Kaitlin Jorgensen for language reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-zhong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Yuan, Xz., Liu, H. et al. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase in Rhamnolipid Reversed Micellar System. Appl Biochem Biotechnol 176, 45–55 (2015). https://doi.org/10.1007/s12010-015-1508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1508-3

Keywords

Navigation