Skip to main content
Log in

Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day−1 (α-endosulfan), 0.284 day−1 (β-endosulfan) and 0.228 day−1 (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day−1 and 0.273 day−1, and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm−1 which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml−1 of tricalcium phosphate, 296 ± 6 μg ml−1 of dicalcium phosphate and 248 ± 5 μg ml−1 of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml−1 of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml−1, respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural fields. In addition, it has been demonstrated that the development of powder formulation has several advantages including high cell count, longer shelf life, greater protection against environmental stresses and increased field efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horne, I., Sutherland, T. D., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2002). Applied and Environmental Microbiology, 68, 3371–3376.

    Article  CAS  Google Scholar 

  2. Siddique, T., Okeke, B. C., Arshad, M., & Frankenberger, W. T., Jr. (2003). Journal of Agricultural and Food Chemistry, 51, 8015–8019.

    Article  CAS  Google Scholar 

  3. Chowdhury, A. G., Das, C., Kole, R. K., Banerjee, H., & Bhattacharyya, A. (2007). Environmental Monitoring and Assessment, 132, 467–473.

    Article  CAS  Google Scholar 

  4. Arrebola, F. J., Egea-Gonzalez, F. J., Moreno, M., Fernandez-Gutierrez, A., Hernandez Torres, M. E., & Martinez-Vidal, J. L. (2001). Pesticide Management and Science, 57, 645–652.

    Article  CAS  Google Scholar 

  5. Ramaneswari, K., & Rao, L. M. (2000). Bulletin of Environmental Contamination and Toxicology, 65, 618–622.

    Article  CAS  Google Scholar 

  6. Shivaramaiah, H. M., Anchez-Bayo, S. F., Al-Rifai, J., & Kennedy, I. R. (2005). Journal of Environmental Science and Health B, 40, 711–720.

    Article  CAS  Google Scholar 

  7. Kwon, G. S., Sohn, H. Y., Shin, K. S., Kim, E., & Seo, B. I. (2005). Applied Microbiology and Biotechnology, 67, 845–850.

    Article  CAS  Google Scholar 

  8. Sutherland, T. D., Weir, K. M., Lacey, M. J., Horne, I., Russell, R. J., & Oakeshott, J. G. (2002). Journal of Applied Microbiology, 92, 541–548.

    Article  CAS  Google Scholar 

  9. Martin, A. R., Calva, G. C., Avelizapa, N. R., Diaz-Cervantes, M. D., & Vazquez, R. R. (2007). International Biodeterioration and Biodegradation, 60, 35–39.

    Article  Google Scholar 

  10. Pino, N., & Penuela, G. (2011). International Biodeterioration and Biodegradation, 65, 827–831.

    Article  CAS  Google Scholar 

  11. Li, W., Dai, Y., Xue, B., Li, Y., Peng, X., Zhang, J., & Yan, Y. (2009). Journal of Hazardous Materials, 167, 209–216.

    Article  CAS  Google Scholar 

  12. Singh, N. S., & Singh, D. K. (2011). Biodegradation, 22, 845–857.

    Article  CAS  Google Scholar 

  13. Gordon, S. A., & Weber, R. P. (1950). Plant Physiology, 26, 192–195.

    Article  Google Scholar 

  14. Brick, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Applied Environmental Microbiology, 57, 535–538.

    Google Scholar 

  15. Khan, M. R., Majid, S., Mohidin, F. A., & Khan, N. (2011). Biological Control, 59, 130–140.

    Article  CAS  Google Scholar 

  16. Lee, J. B., Sohn, H. Y., Shin, K. S., Jo, M. S., Kim, J. E., Lee, S. W., Shin, J. W., Kum, E. J., & Kwon, G. S. (2006). Journal of Agricultural and Food Chemistry, 54, 8824–8828.

    Article  CAS  Google Scholar 

  17. Weir, K. M., Sutherland, T. D., Horne, I., Russel, R. J., & Oakeshott, J. G. (2006). Applied and Environmental Microbiology, 72, 3524–3530.

    Article  CAS  Google Scholar 

  18. Kaur, I., Mathur, R. P., Tandon, S. N., & Dureja, P. (1998). Environmental Technology, 19, 115–119.

    Article  CAS  Google Scholar 

  19. Sethunathan, N., Megharaj, M., Chen, Z. L., Williams, B. D., Lewis, G., & Naidu, R. (2004). Journal of Agricultural and Food Chemistry, 52, 3030–3035.

    Article  CAS  Google Scholar 

  20. Guerin, T. F. (2005). International Environmental Studies, 62, 235–248.

    Article  CAS  Google Scholar 

  21. Altomare, C., Norvell, W. A., Bjorkman, T., & Harman, G. E. (1999). Applied and Environmental Microbiology, 65, 2926–2933.

    CAS  Google Scholar 

  22. Vassilev, N., & Vassilev, M. (2003). Applied Microbiology and Biotechnology, 61, 435–440.

    Article  CAS  Google Scholar 

  23. Rodriguez, H., & Fraga, R. (1999). Biotechnology Advances, 17, 319–339.

    Article  CAS  Google Scholar 

  24. Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Acta Microbiology and Immunology Hung, 56, 263–284.

    Article  CAS  Google Scholar 

  25. Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Journal of Applied Microbiology, 96, 473–480.

    Article  CAS  Google Scholar 

  26. Leveau, H. J., & Lindow, S. E. (2005). Journal of Applied Microbiology, 71, 2365–2371.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Science and Technology (DST, Govt of India, New Delhi) for financial support (research grant, sanction no. DST/TSG/NTS/2009/67).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanthi Abraham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, J., Silambarasan, S. Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan. Appl Biochem Biotechnol 175, 3336–3348 (2015). https://doi.org/10.1007/s12010-015-1504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1504-7

Keywords

Navigation