Skip to main content
Log in

Isolation and Characterization of Cr(VI)-Reducing Actinomycetes from Estuarine Sediments

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bioremediation technologies have strong potential use in the less costly and more environmentally friendly removal of highly toxic hexavalent-chromium (Cr(VI)) compared with physicochemical technologies. Several Cr(VI)-reducing bacteria have been isolated; however, there are few studies on Cr(VI)-resistant and Cr(VI)-reducing actinomycetes. In this study, Cr(VI)-reducing actinomycetes were screened from estuarine, marine, and terrestrial samples on the basis of Cr(VI)-resistant and Cr(VI)-reducing ability. Of the 80 Streptomyces-like strains isolated, 20 strains were found to be resistant to 50 mg/l of Cr(VI). In addition, two strains isolated from the estuarine sediment of Tokyo Bay were found to be resistant to a concentration of 150 mg/l of Cr(VI). Furthermore, one Cr(VI)-reducing strain was found to remove 60 mg/l of Cr(VI) within 1 week and was identified as Streptomyces thermocarboxydus based on 16S rRNA gene analysis. The comparative evaluation with the type strain S. thermocarboxydus NBRC 16323 showed that our isolated strain had higher ability to grow at 27 °C and reduce Cr(VI) at a NaCl concentration of 6.0 % at 27 °C compared with the type strain NBRC 16323. These results indicate that our isolated strain have a potential ability to remove Cr(VI) from contaminated, highly saline sources without heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldi, F., Vaughan, A. M., & Olson, G. J. (1990). Chromium (VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Applied and Environmental Microbiology, 56(4), 913–918.

    CAS  Google Scholar 

  2. Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation, 59(1), 8–15.

    Article  CAS  Google Scholar 

  3. Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 51–54.

    Article  CAS  Google Scholar 

  4. EPA (Environmental Protection Agency). (1998). Toxicological review for hexavalent chromium CASNR 18540-29-9. Washington DC: USA.

    Google Scholar 

  5. Ho, W. S. W., & Poddar, T. K. (2001). New membrane technology for removal and recovery of chromium from waste waters. Environmental Progress, 20(1), 44–52.

    Article  CAS  Google Scholar 

  6. Beleza, V. M., Boaventura, R. A., & Almeida, M. F. (2001). Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environmental Science & Technology, 35(21), 4379–4383.

    Article  CAS  Google Scholar 

  7. Marsh, T. L., Leon, N. M., & McInerney, M. J. (2000). Physiochemical factors affecting chromate reduction by aquifer materials. Geomicrobiology Journal, 17(4), 291–303.

    Article  CAS  Google Scholar 

  8. Lloyd, J. R. (2003). Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, 27(2‐3), 411–425.

    Article  CAS  Google Scholar 

  9. Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., & Matin, A. (2000). Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied and Environmental Microbiology, 66(5), 1788–1795.

    Article  CAS  Google Scholar 

  10. Kwak, Y. H., Lee, D. S., & Kim, H. B. (2003). Vibrio harveyi nitroreductase is also a chromate reductase. Applied and Environmental Microbiology, 69(8), 4390–4395.

    Article  CAS  Google Scholar 

  11. Pal, A., Dutta, S., & Paul, A. K. (2005). Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Current Microbiology, 51(5), 327–330.

    Article  CAS  Google Scholar 

  12. Das, S., & Chandra, A. L. (1990). Chromate reduction in Streptomyces. Experientia, 46(7), 731–733.

    Article  CAS  Google Scholar 

  13. Amoroso, M. J., Castro, G. R., Duran, A., Peraud, O., Oliver, G., & Hill, R. T. (2001). Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. Journal of Industrial Microbiology and Biotechnology, 26(4), 210–215.

    Article  CAS  Google Scholar 

  14. Laxman, R. S., & More, S. (2002). Reduction of hexavalent chromium by Streptomyces griseus. Minerals Engineering, 15(11), 831–837.

    Article  CAS  Google Scholar 

  15. Desjardin, V., Bayard, R., Lejeune, P., & Gourdon, R. (2003). Utilisation of supernatants of pure cultures of Streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils. Water Air and Soil Pollution: Focus, 3(3), 153–160.

    Article  CAS  Google Scholar 

  16. Polti, M. A., García, R. O., Amoroso, M. J., & Abate, C. M. (2009). Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1. Journal of Basic Microbiology, 49(3), 285–292.

    Article  CAS  Google Scholar 

  17. Goodfellow, M., & Haynes, J. A. (1984). Actinomycetes in marine sediments. In L. Ortiz-Ortiz, L. F. Bojalil, & V. Yakoleff (Eds.), Biological, biochemical, and biomedical aspects of actinomycetes. Orlando: Academic.

    Google Scholar 

  18. Hodges, T. W., Slattery, M., & Olson, J. B. (2012). Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters. Marine Biotechnology, 14(3), 270–280.

    Article  CAS  Google Scholar 

  19. Barcina, I., Lebaron, P., & Vives‐Rego, J. (1997). Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiology Ecology, 23(1), 1–9.

    Article  CAS  Google Scholar 

  20. Crump, B. C., Hopkinson, C. S., Sogin, M. L., & Hobbie, J. E. (2004). Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology, 70(3), 1494–1505.

    Article  CAS  Google Scholar 

  21. Shirling, E. T., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313–340.

    Article  Google Scholar 

  22. APHA (American Public Health Association). (1981). Standard methods for the examination of water and wastewater (15th ed.). Washington DC: USA.

    Google Scholar 

  23. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  24. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  25. Saitou, N., & Nei, M. (1987). The neighbor joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  Google Scholar 

  26. Terahara, T., Kobayashi, T., & Imada, C. (2013). An effective method based on wet-heat treatment for the selective isolation of Micromonospora from estuarine sediments. World Journal of Microbiology and Biotechnology, 29(9), 1677–1684.

    Article  CAS  Google Scholar 

  27. Jensen, P. R., Dwight, R., & Fenical, W. (1991). Distribution of actinomycetes in near-shore tropical marine sediments. Applied and Environmental Microbiology, 57(4), 1102–1108.

    CAS  Google Scholar 

  28. Takizawa, M., Colwell, R. R., & Hill, R. T. (1993). Isolation and diversity of actinomycetes in the Chesapeake Bay. Applied and Environmental Microbiology, 59(4), 997–1002.

    CAS  Google Scholar 

  29. Bredholdt, H., Galatenko, O. A., Engelhardt, K., Fjærvik, E., Terekhova, L. P., & Zotchev, S. B. (2007). Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environmental Microbiology, 9(11), 2756–2764.

    Article  CAS  Google Scholar 

  30. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals and assessment of anthropogenic pollution in sediments of Old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 4(6), 654–665.

    Article  CAS  Google Scholar 

  31. Shikazono, N., Yoshioka, A., & Otomo, K. (2009). Pollution problem on urban river water: an example of geochemical study on base metal pollution of river water and sediments of Old-Nakagawa River, Tokyo. Journal of Geography, 118(6), 1205–1220 (In Japanese).

    Article  CAS  Google Scholar 

  32. Polti, M. A., Amoroso, M. J., & Abate, C. M. (2007). Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere, 67(4), 660–667.

    Article  CAS  Google Scholar 

  33. Alvarez, A. H., Moreno-Sánchez, R., & Cervantes, C. (1999). Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. Journal of Bacteriology, 181(23), 7398–7400.

    CAS  Google Scholar 

  34. O'Donnell, A. G., Falconer, C., Goodfellow, M., Ward, A. C., & Williams, E. (1993). Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie van Leeuwenhoek, 64(3–4), 325–340.

    Google Scholar 

  35. Kim, S. B., Falconer, C., Williams, E., & Goodfellow, M. (1998). Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. International Journal of Systematic Bacteriology, 48(1), 59–68.

    Article  Google Scholar 

  36. Desjardin, V., Bayard, R., Huck, N., Manceau, A., & Gourdon, R. (2002). Effect of microbial activity on the mobility of chromium in soils. Waste Management, 22(2), 195–200.

    Article  CAS  Google Scholar 

  37. Imada, C., Masuda, S., Kobayashi, T., Hamada-Sato, N., & Nakashima, T. (2010). Isolation and characterization of marine and terrestrial actinomycetes using a medium supplemented with NaCl. Actinomycetologica, 24(1), 12–17.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the officers and crew members of the research and training vessel “Hiyodori” of Tokyo University of Marine Science and Technology and the members of the International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, for supporting sample collection for this study. This research was supported in part by the Grant-in-Aid from the Faculty of Marine Science, Tokyo Universityof Marine Science and Technology and by the Cooperative Program of Atmosphere and Ocean Research Institute at the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Terahara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terahara, T., Xu, X., Kobayashi, T. et al. Isolation and Characterization of Cr(VI)-Reducing Actinomycetes from Estuarine Sediments. Appl Biochem Biotechnol 175, 3297–3309 (2015). https://doi.org/10.1007/s12010-015-1501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1501-x

Keywords

Navigation