Skip to main content
Log in

Expression and Characterization of a Recombinant Psychrophilic Cu/Zn Superoxide Dismutase from Deschampsia antarctica E. Desv. [Poaceae]

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We present here the structural modeling and biochemical characterization of a recombinant superoxide dismutase (SOD) from Deschampsia antarctica E. Desv. [Poaceae] produced in Escherichia coli. The recombinant protein was purified by affinity chromatography nickel-nitrilotriacetic acid (Ni-NTA), and its identity was demonstrated by immunoblotting and inhibition by H2O2 and KCN. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed the presence of Cu and Zn. Modeling of the D. antarctica Cu/Zn-SOD (DaSOD) amino acid sequence using the SWISS-MODEL and 2Q2L_B monomer of the psychrophilic Cu/Zu-SOD from Potentilla atrosanguinea (PaSOD) as template produced a structure similar to that of the typical eukaryotic Cu/Zn-SODs. Activity assays using the p-nitro blue tetrazolium chloride (NBT) solution method showed that the purified DaSOD had a specific activity of 5818 U/mg at 25 °C and pH 7.2 and that it was active in a pH interval of 5–8 and a temperature interval of 0–40 °C. Furthermore, DaSOD was still active at −20 °C as observed by a zymogram assay. We found 100 % activity when it was heated at 80 °C for 60 min, indicating a high thermostability. DaSOD properties suggest that this enzyme could be useful for preventing the oxidation of refrigerated or frozen foods, as well as in the preparation of cosmetic and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bravo, L. A., Ulloa, N., Zuniga, G. E., Casanova, A., Corcuera, L. J., & Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. Physiologiae Plantarum, 111, 55–65.

    Article  CAS  Google Scholar 

  2. Perez-Torres, E., Garcia, A., Dinamarca, J., Alberdi, M., Gutierrez, A., Gidekel, M., Ivanov, A. G., Huner, N. P. A., Corcuera, L. J., & Bravo, L. A. (2004). The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 31, 731–741.

    Article  CAS  Google Scholar 

  3. Fridovich, I. (1997). Superoxide anion radical (O-2 radical anion), superoxide dismutases, and related matters. Journal of Biological Chemistry, 272, 18515–18517.

    Article  CAS  Google Scholar 

  4. Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331–1341.

    Article  CAS  Google Scholar 

  5. Youn, H. D., Kim, E. J., Roe, J. H., Hah, Y. C., & Kang, S. O. (1996). A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochemical Journal, 318, 889–896.

    CAS  Google Scholar 

  6. Richardson, J. S. (1977). beta-Sheet topology and the relatedness of proteins. Nature, 268, 495–500.

    Article  CAS  Google Scholar 

  7. Bafana, A., Dutt, S., Kumar, S., & Ahuja, P. S. (2011). Superoxide dismutase: an industrial perspective. Critical Reviews in Biotechnology, 31, 65–76.

    Article  CAS  Google Scholar 

  8. Di Mambro, V. M., & Fonseca, M. J. (2007). Assessment of physical and antioxidant activity stability, in vitro release and in vivo efficacy of formulations added with superoxide dismutase alone or in association with alpha-tocopherol. European Journal of Pharmaceutics and Biopharmaceutics, 66, 451–459.

    Article  Google Scholar 

  9. Mizushima, Y., Hoshi, K., Yanagawa, A., & Takano, K. (1991). Topical application of superoxide dismutase cream. Drugs Under Experimental and Clinical Research, 17, 127–131.

    CAS  Google Scholar 

  10. Sanchez-Venegas, J. R., Dinamarca, J., Moraga, A. G., & Gidekel, M. (2009). Molecular characterization of a cDNA encoding Cu/Zn superoxide dismutase from Deschampsia antarctica and its expression regulated by cold and UV stresses. BMC Research Notes, 2, 198.

    Article  Google Scholar 

  11. Kumar, A., Dutt, S., Bagler, G., Ahuja, P. S., & Kumar, S. (2012). Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50 degrees C, which also tolerates autoclaving. Scientific Reports, 2, 387.

    Google Scholar 

  12. Garcia-Echauri, S. A., Gidekel, M., Moraga, A. G., Ordonez, L. G., Contreras, J. A. R., Barba de la Rosa, A. P., & De Leon Rodriguez, A. (2009). Heterologous expression of a novel psychrophilic Cu/Zn superoxide dismutase from Deschampsia antarctica. Process Biochemistry, 44, 969–974.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  15. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055.

    CAS  Google Scholar 

  16. Yogavel, M., Gill, J., Mishra, P. C., & Sharma, A. (2007). SAD phasing of a structure based on cocrystallized iodides using an in-house CuK alpha X-ray source: effects of data redundancy and completeness on structure solution. Acta Crystallography D, 63, 931–934.

    Article  CAS  Google Scholar 

  17. Yogavel, M., Mishra, P. C., Gill, J., Bhardwaj, P. K., Dutt, S., Kumar, S., Ahuja, P. S., & Sharma, A. (2008). Structure of a superoxide dismutase and implications for copper-ion chelation. Acta crystallographica. Section D, Biological crystallography, D64, 892–901.

    Article  Google Scholar 

  18. Chodanowski, P., Grosdidier, A., Feytmans, E., Michielin, O. (2008) Local alignment refinement using structural assessment. Plos One 3.

  19. Perry, J. J. P., Shin, D. S., Getzoff, E. D., & Tainer, J. A. (2010). The structural biochemistry of the superoxide dismutases. Bba-Proteins Proteomics, 1804, 245–262.

    Article  CAS  Google Scholar 

  20. Wang, S. Y., Shao, B., Liu, S. T., Ye, X. Y., & Rao, P. F. (2012). Purification and characterization of Cu, Zn-superoxide dismutase from black soybean. Food Research International, 47, 374–379.

    Article  CAS  Google Scholar 

  21. Kumar, S., Dhillon, S., Singh, D., & Singh, R. (2004). Partial purification and characterization of superoxide dismutase from tomato (Lycopersicon esculentum) fruit. Journal of Food Sciences and Nutrition, 9, 283–288.

    CAS  Google Scholar 

  22. Zheng, Z., Jiang, Y. H., Miao, J. L., Wang, Q. F., Zhang, B. T., & Li, G. Y. (2006). Purification and characterization of a cold-active iron superoxide dismutase from a psychrophilic bacterium, Marinomonas sp NJ522. Biotechnology Letters, 28, 85–88.

    Article  CAS  Google Scholar 

  23. Sahoo, R., Kumar, S., & Ahuja, P. S. (2001). Induction of a new isozyme of superoxide dismutase at low temperature in Potentilla astrisanguinea Lodd. variety argyrophylla (Wall. ex. Lehm) Griers. Journal of Plant Physiology, 158, 1093–1097.

    Article  CAS  Google Scholar 

  24. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases. I: occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  25. Asada, K., Takahashi, M., & Nagate, M. (1974). Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry, 38, 471–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by CONACyT-Básicas Grant No. 178988. Juan Rojas thanks CONACyT for his scholarship No. 204213. The authors thank Leandro G. Ordoñez for technical support and Jennifer Ecklerly for English correction. We thank the Chilean Antarctic Institute (INACH) for the logistic support during the stay in the Scientific Base “Prof. Julio Escudero,” King George Island, Antarctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De León-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Contreras, J.A., de la Rosa, A.P.B. & De León-Rodríguez, A. Expression and Characterization of a Recombinant Psychrophilic Cu/Zn Superoxide Dismutase from Deschampsia antarctica E. Desv. [Poaceae]. Appl Biochem Biotechnol 175, 3287–3296 (2015). https://doi.org/10.1007/s12010-015-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1496-3

Keywords

Navigation