Skip to main content
Log in

Biochemical Characterization of a Thermostable Adenosylmethionine Synthetase from the Archaeon Pyrococcus Furiosus with High Catalytic Power

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Adenosylmethionine synthetase plays a key role in the biogenesis of the sulfonium compound S-adenosylmethionine, the principal widely used methyl donor in the biological methylations. We report here, for the first time, the characterization of adenosylmethionine synthetase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMAT). The gene PF1866 encoding PfMAT was cloned and expressed, and the recombinant protein was purified to homogeneity. PfMAT shares 51, 63, and 82 % sequence identity with the homologous enzymes from Sulfolobus solfataricus, Methanococcus jannaschii, and Thermococcus kodakarensis, respectively. PfMAT is a homodimer of 90 kDa highly thermophilic with an optimum temperature of 90 °C and is characterized by remarkable thermodynamic stability (Tm, 99 °C), kinetic stability, and resistance to guanidine hydrochloride-induced unfolding. The latter process is reversible as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. Limited proteolysis experiments indicated that the proteolytic cleavage site is localized at Lys148 and that the C-terminal peptide is necessary for the integrity of the active site. PfMAT shows kinetic features that make it the most efficient catalyst for S-adenosylmethionine synthesis among the characterized MAT from Bacteria and Archaea. Molecular and structural characterization of PfMAT could be useful to improve MAT enzyme engineering for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AdoMet:

S-Adenosylmethionine

MAT:

Adenosylmethionine synthetase or methionine adenosyltransferase

PfMAT:

MAT from Pyrococcus furiosus

SsMAT:

MAT from Sulfolobus solfataricus

MjMAT:

MAT from Methanococcus jannaschii

TkMAT:

MAT from Thermococcus kodakarensis

EcMAT:

MAT from Escherichia coli

BsMAT:

MAT from Bacillus subtilis

GdnCl:

Guanidine hydrochloride

IPTG:

Isopropyl-β-d-thiogalactopyranoside

PVDF:

Polyvinylidene fluoride

CD:

Circular dichroism

References

  1. Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G., & Schlenk, F. (1977). The biochemistry of adenosylmethionine. New York: Columbia University Press.

    Google Scholar 

  2. Usdin, E., Borchardt, C. R. T., & Creveling, R. (1982). Biochemistry of s-adenosylmethionine and related compounds. London: MacMillan Press.

    Google Scholar 

  3. Lu, S. C. (2000). S-Adenosylmethionine. International Journal of Biochemistry and Cell Biology, 32, 391–395.

    Article  CAS  Google Scholar 

  4. Mato, J. M., Corrales, F. J., Lu, S. C., & Avila, M. A. (2002). S-Adenosylmethionine: a control switch that regulates liver function. FASEB Journal, 16, 15–26.

    Article  CAS  Google Scholar 

  5. Fontecave, M., Atta, M., & Mulliez, E. (2004). S-Adenosylmethionine: nothing goes to waste. Trends Biochemical Sciences, 29, 243–249.

    Article  CAS  Google Scholar 

  6. Cantoni, G. L. (1953). S-Adenosylmethionine, a new intermediate formed enzimatically from L-metionine and adenosinetriphosphate. Journal of Biological Chemistry, 203, 403–416.

    Google Scholar 

  7. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & McCann, P. P. (1996). S-Adenosylmethionine and methylation. FASEB Journal, 10, 471–480.

    CAS  Google Scholar 

  8. Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30, 42–59.

    Article  CAS  Google Scholar 

  9. Frey, P. A., Hegeman, A. D., & Ruzicka, F. J. (2008). The radical SAM superfamily. Critical Reviews in Biochemistry and Molecular Biology, 43, 63–88.

    Article  CAS  Google Scholar 

  10. Sauter, M., Moffatt, B., Saechao, M. C., Hell, R., & Wirtz, M. (2013). Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochemistry Journal, 451, 145–154.

    Article  CAS  Google Scholar 

  11. Ansorena, E., García-Trevijano, E. R., Martínez-Chantar, M. L., Huang, Z. Z., Chen, L., Mato, J. M., Iraburu, M., Lu, S. C., & Avila, M. A. (2002). S-Adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology, 35, 274–280.

    Article  CAS  Google Scholar 

  12. Martinez-Lopez, N., Valera-Rey, M., Ariz, U., Embade, N., Vazquez-Chantada, M., Fernandez-Ramos, D., Gomez-Santos, L., Lu, S. C., Mato, J. M., & Martinez-Chantar, M. L. (2008). S-Adenosylmethionine and proliferation: new pathways, new targets. Biochemical Society Transactions, 36, 848–852.

    Article  CAS  Google Scholar 

  13. Li, T. W. H., Yang, H., Peng, H., Xia, M., Mato, J. M., & Lu, S. C. (2012). Effects of S-adenosylmethionine and metylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis, 33, 427–435.

    Article  Google Scholar 

  14. Bottiglieri, T. (2002). S-Adenosyl-L-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotrophic molecule. American Journal of Clinical Nutrition, 76, 1151S–1157S.

    CAS  Google Scholar 

  15. Papakostas, G. I., Cassiello, C. F., & Iovieno, N. (2012). Folates and S-adenosylmethionine for major depressive disorder. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 57, 406–413.

    Google Scholar 

  16. Soeken, K. L., Lee, W. L., Bausell, R. B., Agelli, M., & Berman, B. M. (2012). Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. Journal Farmacia Practice, 51, 425–430.

    Google Scholar 

  17. Anstee, Q. M., & Day, C. P. (2012). S-Adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. Journal of Hepatology, 57, 1097–1109.

    Article  CAS  Google Scholar 

  18. Lu, S. C., & Mato, J. M. (2012). S-Adenosylmethionine in liver health, injury, and cancer. Physiological Reviews, 92, 1515–1542.

    Article  CAS  Google Scholar 

  19. Mato, J. M., Martinez-Chantar, M. L., & Lu, S. C. (2013). S-Adenosylmethionine metabolism and liver disease. Annals of Hepatology, 12, 183–189.

    CAS  Google Scholar 

  20. Kotb, M., & Geller, A. M. (1993). Methionine adenosyltransferase: structure and function. Pharmacology and Therapeutics, 59, 125–143.

    Article  CAS  Google Scholar 

  21. Mato, J. M., Alvarez, L., Ortiz, P., & Pajares, M. A. (1997). S-Adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacology and Therapeutics, 73, 265–280.

    Article  CAS  Google Scholar 

  22. Markham, G. D., & Pajares, M. A. (2009). Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 66, 636–648.

    Article  CAS  Google Scholar 

  23. Pajares, M. A., & Markham, G. D. (2011). Methionine adenosyltransferase (S-adenosyl-methionine synthetase). Advances in Enzymology and Related Areas of Molecular Biology, 78, 449–452.

    CAS  Google Scholar 

  24. Markham, G. D., Hafner, E. W., Tabor, C. W., & Tabor, H. (1980). S-Adenosylmethionine synthetase from Escherichia coli. Journal of Biological Chemistry, 255, 9082–9092.

    CAS  Google Scholar 

  25. Komoto, J., Yamada, T., Takata, Y., Markham, G. D., & Takusagawa, F. (2004). Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry, 43, 1821–1831.

    Article  CAS  Google Scholar 

  26. Gonzalez, B., Pajares, M. A., Hermoso, J. A., Guillerm, D., Guillerm, G., & Sanz-Aparicio, J. (2003). Crystal structures of methionine adenosyltransferase complexed with substrates and products reveal the methionine-ATP recognition and give insights into the catalytic mechanism. Journal of Molecular Biology, 331, 407–416.

    Article  CAS  Google Scholar 

  27. Alvarez, L., Corrales, F., Martin-Duce, A., & Mato, J. M. (1993). Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochemistry Journal, 293, 481–486.

    CAS  Google Scholar 

  28. Shafqat, N., Muniz, J. R., Pilka, E. S., Papagrigoriou, E., vonDelft, F., Oppermann, U., & Yue, W. W. (2013). Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits. Biochemistry Journal, 452, 27–36.

    CAS  Google Scholar 

  29. Reytor, E., Pérez-Miguelsanz, J., Alvarez, L., Pèrez-Sala, D., & Pajares, M. A. (2009). Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB Journal, 23, 3347–3360.

    Article  CAS  Google Scholar 

  30. De Rosa, M., De Rosa, S., Gambacorta, A., Cartenì-Farina, M., & Zappia, V. (1978). The biosynthetic pathway of new polyamines in Caldariella acidophila. Biochemistry Journal, 176, 1–7.

    Google Scholar 

  31. Porcelli, M., Cacciapuoti, G., Cartenì-Farina, M., & Gambacorta, A. (1988). S-Adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. European Journal of Biochemistry, 177, 273–280.

    Article  CAS  Google Scholar 

  32. Graham, D. E., Bock, C. L., Schalk-Hihi, C., Lu, Z. J., & Markham, G. D. (2000). Identification of a highly diverged class of S-adenosylmethionine synthetases in the Archaea. Journal of Biological Chemistry, 275, 4055–4059.

    Article  CAS  Google Scholar 

  33. Lu, Z. J., & Markham, G. D. (2002). Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. Journal of Biological Chemistry, 277, 16624–16631.

    Article  CAS  Google Scholar 

  34. Garrido, F., Alfonso, C., Taylor, J. C., Markham, G. D., & Pajares, M. A. (2009). Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Biochimica et Biophysica Acta, 1794, 1082–1090.

    Article  CAS  Google Scholar 

  35. Garrido, F., Taylor, J. C., Alfonso, C., Markham, G. D., & Pajares, M. A. (2012). Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids, 42, 361–373.

    Article  CAS  Google Scholar 

  36. Schlesier, J., Siegrist, J., Gerhardt, S., Erb, A., Blaesi, S., Richter, M., Einsle, O., & Andexer, J. N. (2013). Structural and functional characterization of the methionine adenosyltransferase from Thermococcus kodakarensis. BMC Structural Biology, 13, 22–31.

    Article  CAS  Google Scholar 

  37. Wang, F., Singh, S., Zhang, J., Huber, T. D., Helmich, K. E., Sunkara, M., Hurley, K. A., Goff, R. D., Bingman, C. A., Morris, A. J., Thorson, J. S., & Phillips, G. N., Jr. (2014). Understanding molecular recognition of promiscuity of thermophilic methionineadenosyltransferase, sMAT from Sulfolobus solfataricus. FEBS Journal. doi:10.1111/febs.12784.

    Google Scholar 

  38. Adams, M. W. W., & Kelly, R. M. (1994). Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea. Bioorganic & Medicinal Chemistry, 2, 659–667.

    Article  CAS  Google Scholar 

  39. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  40. Niehaus, F., Bertoldo, C., Kahler, M., & Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology, 51, 711–729.

    Article  CAS  Google Scholar 

  41. Fiala, G., & Stetter, K. O. (1986). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Archives of Microbiology, 145, 56–61.

    Article  CAS  Google Scholar 

  42. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  43. Cacciapuoti, G., Porcelli, M., Bertoldo, C., De Rosa, M., & Zappia, V. (1994). Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. Journal of Biological Chemistry, 269, 24762–24769.

    CAS  Google Scholar 

  44. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  45. Cacciapuoti, G., Fuccio, F., Petraccone, L., Del Vecchio, P., & Porcelli, M. (2012). Role of disulfide bonds in conformational stability and folding of 5-deoxy-5-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochimica et Biophysica Acta, 1824, 1136–1143.

    Article  CAS  Google Scholar 

  46. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  47. Ragone, R., Facchiano, F., Cacciapuoti, G., Porcelli, M., & Colonna, G. (1992). Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 2. Denaturation and structural stability. European Journal of Biochemistry, 204, 483–490.

    Article  CAS  Google Scholar 

  48. Faraone Mennella, M. R., Gambacorta, A., Nicolaus, B., & Farina, B. (1998). Purification and biochemical characterization of a poly(ADP-ribose) polymearse-like enzyme from the thermophilic archaeon Sulfolobus solfataricus. Biochemistry Journal, 335, 441–447.

    CAS  Google Scholar 

  49. Kamarthapu, V., Rao, K. V., Srinivas, B. S., Reddy, G. B., & Reddy, V. D. (2008). Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochimica et Biophysica Acta, 1784, 1949–1958.

    Article  CAS  Google Scholar 

  50. Chu, J., Qian, J., Zhuang, Y., Zhang, S., & Li, Y. (2013). Progress in the research of S-adenosylmethionine production. Applied Microbiology and Biotechnology, 97, 41–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Seconda Università of Naples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Porcelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcelli, M., Ilisso, C.P., De Leo, E. et al. Biochemical Characterization of a Thermostable Adenosylmethionine Synthetase from the Archaeon Pyrococcus Furiosus with High Catalytic Power. Appl Biochem Biotechnol 175, 2916–2933 (2015). https://doi.org/10.1007/s12010-015-1476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1476-7

Keywords

Navigation